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‘Plan of the Lecture'

. Geometric Root Counting why consider mized volumes?

. The Theorems of Bernshtein

sharp root counts + deficiency criterion

. Mixed Volumes

maixed subdivisions visualize Minkowski’s theorem

. Polyhedral End Games finding certificates for divergence
. Polyhedral Continuation solving sparse system in two stages
. Software and Applications outline of blackbox solver
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Recommended Background Literature'

I[.M. Gel’fand, M.M. Kapranov, and A.V. Zelevinsky: Discriminants,

J.E. Goodman and J. O’Rourke (editors): Handbook of Discrete and
Computational Geometry. CRC Press, 1997.

R. Schneider: Convex Bodies: The Brunn-Minkowski Theory.
Cambridge University Press, 1993.

B. Sturmfels: Grobner Bases and Convex Polytopes. AMS, 1996.

B. Sturmfels: Polynomial equations and convex polytopes. Amer.
Math. Monthly, 105(10):907-922, 1998.

B. Sturmfels: Solving Systems of Polynomial Equations. AMS, 2002.

G.M. Ziegler: Lectures on Polytopes. Springer, 1995.
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Resultants and Multidimensional Determinants. Birkhauser, 1994.
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Solving Systems with Homotopies'

Concerns (of anyone who tries to use numerical homotopies)

1. efficiency: #paths = bound on #solutions;

how can we find good bounds on #solutions?

2. validation: how can we be sure to have all solutions?

Answers (why we should consider polyhedral methods)

1. generically sharp root counts,

which can be computed by fully automatic blackboxes

2. certificates for diverging paths,

which are cheap by-products of continuation
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‘Geometric Root Counting.

~

o

fi(x) = Z CiaX" P; = conv(A;)
acA;
Cia € C* = C\ {0} Newton polytope
f:(f]_)fQ)"-)f’rL) P:(Pl,PQ,...,Pn)
L(f) root count in (C*)" V(P) mixed volume
L(f):L(f27f177fn) V(P27P177PH)ZV(P)
L(f) = L(fix®,..., fn) V(P1+a,...,P,) =V(P)
L(f) < L(f1 +x2,...,fn) V(conv(P1 +a),...,Pn) > V(P)
L(f) = L(f1(x"®),..., fn(x"?)) V(UPy,...,UPy) =V(P)
L(fi1fi2,-- s fn) V(P11 + Pi2,..., Pp)
= L(fll, cey fn) + L(f12, ceey fn) = V(Pll, ceey Pn) + V(P12, ceey Pn)
exploit sparsity | L(f) = V(P) | 1st theorem of Bernshtein
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‘The Theorems of Bernshtein'

Theorem A: The number of roots of a generic system equals the

mixed volume of its Newton polytopes.

Theorem B: Solutions at infinity are solutions of systems

supported on faces of the Newton polytopes.

D.N. Bernshtein: The number of roots of a system of equations.
Functional Anal. Appl., 9(3):183-185, 1975.

Structure of proofs: First show Theorem B, looking at power series
expansions of diverging paths defined by a linear homotopy
starting at a generic system. Then show Theorem A, using

Theorem B with a homotopy defined by [lifting the polytopes.
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‘Systems, Supports, and Newton Polytopes'

f="({f,12) A = (A1, As)
B T3 + 1125 +1=0 A1 ={(3,1),(1,2),(0,0)}
T+ 1100 +1 =0 Ay ={(4,0),(1,1),(0,0)}

The sparse structure of f is modeled by the tuple A = (A, As).
A1 and As are the supports of fi and fo respectively.
The Newton polytopes are the convex hulls of the supports.
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~




The Cayley polytope'

Place one polytope at level 0, the other at level 1.
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A triangulation of the Cayley polytope'
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4 2
Mixed Volumes I

Mixed subdivisions visualize Minkowski’s theorem:

area()\lPl + )\2P2) = V(Pl, Pl))\% + 2V<P1, PQ))\l)\Q + V(PQ, PQ))\%
= B5AZ 4+ 2 x 8A1\a + HA2
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‘Newton Polytopes and Real Solutions.

B. Sturmfels: On the number of real roots of a sparse polynomial

system. In Hamziltonian and Gradient Flows: Algorithms and Control, ed.
by A. Bloch, pages 137-143, AMS 1994.

B. Sturmfels: Viro’s theorem for complete intersections. Annali della
Scuola Normale Superiore di Pisa 21(3):377-386, 1994.

I. Itenberg and M.-F. Roy: Multivariate Descartes’ rule. Beitrage zur
Algebra and Geometry 37(2):337-346, 1996.

T.Y. Li and X. Wang: On multivariate Descartes’ rule — a
counterexample. Beitrage zur Algebra and Geometry 39(1):1-5, 1998.

I. Itenberg and E. Shustin: Viro theorem and topology of real and
complex combinatorial hypersurfaces. Israel Math. J. 133: 189238,
2003. math.AG/0105198
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‘Bernshtein’s second theorem'

e Face O,f = (0, f1,0.,f2,...,0,fn) of system

f=(f1, f2,--., fn) with Newton polytopes
P = (P, P,,...,P,) and mixed volume V(P).

0,P; = conv(0,A;)

face of Newton polytope

awfi (X) — Z Ciaxa

Theorem: If Vw # 0, d,,f(x) = 0 has no solutions in (C*)",

then V(P) is exact and all solutions are isolated.

Otherwise, for V(P) # 0: V(P) > #isolated solutions.

\_

e Newton polytopes in general position:

V(P) is exact for every nonzero choice of the coefficients.

~

13



4 N

Newton polytopes in general position

C11121ZT2 + Cc110T1 + Cc101T2 + c100 = 0

Consider f(x) =

2 92 _
C222X1T5 + C210T1 + C20122 = 0

The Newton polytopes:

g

Vw#0:0,A1 + 0,42 <3 = V (P, P;) =4 always exact

Py

for all nonzero coefficients

\_ /
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/ Power Series ' \

Theorem: Vx(t), h(x(t),t) = (1 —t)g(x(t)) + tf(x(t)) = 0,
ds >0, m e N\ {0}, w e Z™:
ri(s) =b;s"(1+0(s)), i=1,2,...,n

t(s)=1—s™ fort ~1,s~0
r r
— 00 <0
}irri x;(t) € C*7 z;(t){ € C* S wik =0
. —0 . >0

m is the winding number, i.e. the smallest number so that

z(2rm) = z(0), h(z(0),t(0)) =0, t=1+ (tc —1)e?, t;,~ 1.

\_ /
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/ ‘Face Systems and Power Series' \

assume lim x;(t) € C*, thus w; # 0, a diverging path

o h(x,t)=(1—-1t)g(x)+tf(x)=0 x;(s) = b;s¥ (1 + O(s))
substitute power series t(s) =1—sm,s=0
h(x(s),t(s)) = f(x(s))  +s"(g(x(s)) = f(x(s))) =0
N—_——

dominant as s—0

o fi(x)= Z ciaX" — fi(x(s)) = Z CiaHb?3<a’w>(1 +0(s))
acA; ?EAi 1=1

0. fi(x(s)) dominant
face 9,4, :={ac A; | (a,w) = min (a’,w) }

a’eA;
= 0, f(b) =0,b € (C*)"
\ key idea in proof of Bernshtein’s second theorery

7
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‘Richardson Extrapolation for w and m'

zi(s) = b;is¥ (14 O(s)) Geometric sampling 0 < h < 1
t(s) = 1—sm 1—t=h(l—ty)=---=h"(1—tg)
sp.=h1/mg —...=pk/mg
zi(sk) = bihFwi/™sq(1 + O(hF/™s0)) k=R s —1 = =hT S0
elog|z;(sk)| = log |b;| + k::b’b log(h) 4+ w; log(so) Extrapolation on samples
. o — OGS OO Bl PO B
+10g(1‘|‘2;‘;0 b;(hk/mso)j) E..1=Vk..1—1 1—Th
Vkk+1 = log |zi(sk + 1) — log |z;(sk)| wi = miglety + O(sp)
o egk) = (log|zi(sk)| — log|zi(sk+1)]) Extrapolation on errors
—(log |z; (sk41)| — log |zi(sk+2)]) ORI GRS B GRS
©i — + 1—hp 1
= Clhk/mS()(l—l—O(hk/m)) hi, | = h(l_k_l)/mk..l
kk k41 k log(h CKVk/m
eFFD  — 1og(eF D) ~ log(e™) g | = ﬁflg + O(RU=R)k/m)

o /
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/ the system of Cassou—NoguésI \

f(b,c,d,e) =

( 15b%cd? + 6b%c3 + 21b%c2d — 144b2¢ — 8b2c2e
—28b%cde — 648b%d + 36b%d%e + 9b4d3 — 120 = O

30c3b*d — 32de?c — T20db%c — 24c3b%e — 432¢2b2 + 5T6ec

—576de + 16cb2d?e + 16d2%e2 + 16e2¢2 + 9¢*b* + 5184

+39d2b%c? + 18d3b%c — 432d?b? + 24d3b%e — 16¢2b?de —240c = 0
216db?c — 162d?b? — 81c?b? + 5184 + 1008ec — 1008de

+15¢2b%de — 15¢3b%e — 80de?c + 40d2%e? + 40e%c2 = 0

261 + 4db%c — 3d?b? — 4c?b? + 22ec —22de = 0

\

Root counts: D = 1344, B = 312, V(P) = 24 > 16 finite roots.

[ _8b2c2¢ — 28b2cde + 36b2d2e = 0

5 Fbc.d, e) < —32de?c + 16d%e2 + 16e2¢2 =0
_ 7C7 76 —

(0,0,0,—1) _80de2c 4 40d2e2 + 40e2¢2 = 0

m = 2
\ \ 22ec — 22de = 0 /
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Some further recommended reading'

B. Huber and J. Verschelde: Polyhedral end games for

polynomial continuation.
Numerical Algorithms 18(1):91-108, 1998.

J. Verschelde: Toric Newton Method for Polynomial

\_

Homotopies.
J. Symbolic Computation 29(4-5): 777-793, 2000.
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/ ‘Sparsity and Unimodular Transformations. \

xle +cl—() y1 +c1 =0
Fx) = fx=y")={ "
1235 +co =0 Y1 “Ys +cg =0
The substitution x" = (yY)V = yVY = y is elaborated as
wiayt [ 09w (v )
i - T3 (¥9y2)" - (1 '93)°
3-0—1-(—1 1—1.
I Y S W (TR
o 1-04+2-(—1 142. - _
y TRy iy
factorization VU = L : 3 —1 0 1] 1 0
(U unimodular, det(U)=1) 1 2 1 3 o _9 7

. S

20




~

/

‘Pivoting to update a triangulation.

/
51 L §
"I\\\
[ \C2
I\
”" \\\ 1.5’
,f N\
3o o\ N\
f X \N
2 ‘,"’ G
C1 ™\
oy ey
co = 1 2 3 4 5
— (0.0 — (2.3 — 41 1 5
co = (0,0) x = (2,3) X =TgCo T 3C1 T §C2
1 9 - barycentric
c1 = (3,2 = (9,1 — —3Cpo + 3€C1 — zC .
1= (3,2) y = (5,1) Y 30T %1 7 8%2 coordinates
1 3 13
\CQ :(2,4) Zz — (175) Z:+§CO_ ZC1+§CQ /
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Incremental Polyhedral Continuation'

c111x1x2 + c110x1 + cio1x2 + c100 = 0

g(x) =

c211T1x2 + c210T1 + c201x2 + c200 = 0

vi = (0,0,1)
g1 (X7 t) —
ci111x1x2 + c110x1 + cio1x2t + c100 =0

c211X122 + c210x1 + c201x2t + c200 = 0

r1 = 21t Tro = 5275_1

Vo = (1, —1, 1)
g92(Xx,t) =
c111T1T2 + c110T1t + c101T2 + c100 = 0

Cc211T1Z2 + c210X1t + c201X2 + c200 = 0

0.8]
0.6]
0.4

0.2

V2

Vi
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Mixed Cell Configurations and Normal Fans'

normals to mixed cells are in the intersections of normal cones to the edges

//c
o ®\\
/’Q\ p
. P
Q Q'::/ . Cj///
° Ay
( <a’ V> — <E7V> \V/a, B G GVA\,L
Find all v satisfying ¢ (a,v) > <B,v) Va € A\z \3\;121\1,‘7/1; c 3VA\¢
X Un4l = 1 1=1,2,...,n

o

~
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‘ Polyhedral Homotopies I

Let g(x) = 0 have the same Newton polytopes P as f(x) = 0,

but with randomly choosen complex coefficients.

[. Compute V,(P): II. Solve g(x) = 0:

I.1 lift polytopes II.1 introduce parameter ¢
[.2 mixed cells & 112 start systems

[.3 volume of mixed cell II.3 path following

III. Solve the specific system f(x) = 0:
h(x,t) =(1—1t)g(x)+tf(x) =0, fort from 0 to 1.
coefficient-parameter continuation

\_ /
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‘Some references on polyhedral methods'

B. Huber and B. Sturmfels: A polyhedral method for solving sparse
polynomial systems. Math. Comp. 64(212):1541-1555, 1995.

[.Z. Emiris and J.F. Canny: Efficient incremental algorithms for the
sparse resultant and the mixed volume. J. Symbolic Computation
20(2):117-149, 1995.

[.Z. Emiris: Sparse Elimination and Applications in Kinematics. PhD
thesis, UC Berkeley, 1994.

J. Verschelde: Homotopy Continuation Methods for Solving
Polynomial Systems. PhD thesis, KU Leuven, 1996.

B. Sturmfels: Polynomial equations and convex polytopes. Amer.
Math. Monthly 105(10):907-922, 1998.

o /
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/ ‘ Recent computational advances I \

more efficient use of linear programming;:

T.Y. Li and X. Li: Finding mixed cells in the mixed volume
computation. Found. Comput. Math. 1(2): 161-181, 2001.
Software available at http://www.math.msu.edu/"11i.

T. Gao and T.Y. Li: Mixed volume computation for semi-mixed
systems. Discrete Comput. Geom. 29(2):257-277, 2003.

and parallel mixed-volume computations:

A. Takeda, M. Kojima and K. Fujisawa: Enumeration of all solutions of a
combinatorial linear inequality system arising from the
polyhedral homotopy continuation Method. Journal of the
Operations Research Society of Japan 45(1): 64-82, 2002.

Y. Dai, S. Kim and M. Kojima: Computing all nonsingular solutions of
cyclic-n polynomial using polyhedral homotopy continuation
methods. J. Comput. Appl. Math. 152(1-2): 83-97, 2003.

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizutani:
PHoM — a polyhedral homotopy continuation method for

\ polynomial systems. http://www.is.titech.ac.jp/ kojima/sdp. html/
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Blackbox Solving and Benchmarking'

Building a simple blackbox solver:

phc -b first computes various root counts based on versions of
Bézout’s theorem and mixed volumes. The start system is
based on the smallest root count, and in case of equal counts,
using the least complicated method.

The collection of test systems:
available at http://www.math.uic.edu/ jan/demo.html

blackbox strategy opened up a wide range of applications

\_ /
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Exercises '

e Take any polynomial system, solve it with the blackbox solver
of PHCpack (as phc -b input output), and see what root

count was used to build the start system.

e Explore the options of phc -m. In particular, the Cayley trick
is efficient when there are only few different Newton polytopes.
Find such an example where dynamic lifting with the Cayley

trick outperforms the static lifting techniques.

\_ /
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