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Plan of the Lecture

1. Numerical Algebraic Geometry Dictionary

witness points and membership tests

2. Homotopies to compute Witness Points

a refined version of Bézout’s theorem

3. Diagonal Homotopies

to intersect positive dimensional components of solutions

4. Software and Applications

numerical elimination methods

2



'

&

$

%

Recommended Background Literature

W. Fulton: Introduction to Intersection Theory in Algebraic

Geometry. AMS 1984. Reprinted in 1996.

W. Fulton: Intersection Theory. Springer 1998, 2nd Edition.

J. Harris: Algebraic Geometry. A First Course. Springer 1992.

D. Mumford: Algebraic Geometry I. Complex Projective

Varieties. Springer 1995. Reprint of the 1976 Edition.
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Solution sets to polynomial systems

Polynomial in One Variable System of Polynomials

one equation, one variable n equations, N variables

solutions are points points, lines, surfaces, . . .

multiple roots sets with multiplicity

Factorization:
∏

i

(x− ai)
µi Irreducible Decomposition

Numerical Representation

set of points set of witness sets
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Joint Work with A.J. Sommese and C.W. Wampler

A.J. Sommese and C.W. Wampler: Numerical algebraic geometry. In The

Mathematics of Numerical Analysis, ed. by J. Renegar et al., volume 32 of

Lectures in Applied Mathematics, 749–763, AMS, 1996.

A.J. Sommese and JV: Numerical homotopies to compute generic points on

positive dimensional algebraic sets. Journal of Complexity 16(3):572–602,

2000.

A.J. Sommese, JV and C.W. Wampler: Numerical decomposition of the

solution sets of polynomial systems into irreducible components. SIAM

J. Numer. Anal. 38(6):2022–2046, 2001.

A.J. Sommese, JV and C.W. Wampler: Numerical irreducible decomposition

using PHCpack. In Algebra, Geometry, and Software Systems, edited by M.

Joswig and N. Takayama, pages 109–130, Springer-Verlag, 2003.

A.J. Sommese, JV and C.W. Wampler: Homotopies for Intersecting Solution

Components of Polynomial Systems. Manuscript, 2003.
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An Illustrative Example

f(x, y, z) =















(y − x2)(x2 + y2 + z2 − 1)(x− 0.5) = 0

(z − x3)(x2 + y2 + z2 − 1)(y − 0.5) = 0

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5) = 0

Irreducible decomposition of Z = f−1(0) is

Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}
with 1. Z21 is the sphere x2 + y2 + z2 − 1 = 0,

2. Z11 is the line (x = 0.5, z = 0.53),

3. Z12 is the line (x =
√
0.5, y = 0.5),

4. Z13 is the line (x = −
√
0.5, y = 0.5),

5. Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0),

6. Z01 is the point (x = 0.5, y = 0.5, z = 0.5).
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An Illustrative Example - the plots
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Witness Sets

A witness point is a solution of a polynomial system which lies

on a set of generic hyperplanes.

• The number of generic hyperplanes used to isolate a point from

a solution component

equals the dimension of the solution component.

• The number of witness points on one component cut out by the

same set of generic hyperplanes

equals the degree of the solution component.

A witness set for a k-dimensional solution component consists of

k random hyperplanes and a set of isolated solutions of the

system cut with those hyperplanes.
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Membership Test

Does the point z belong to a component?

Given: a point in space z ∈ CN ; a system f(x) = 0;

and a witness set W , W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

1. Let Lz be a set of hyperplanes through z, and define

h(x, t) =







f(x) = 0

Lz(x)t+ L(x)(1− t) = 0

2. Trace all paths starting at w ∈ Z, for t from 0 to 1.

3. The test (z, 1) ∈ h−1(0)? answers the question above.
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Membership Test – an example

L Lz f−1(0)

sz 6∈ f−1(0)

h(x, t) =







f(x) = 0

Lz(x)t+ L(x)(1− t) = 0
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Numerical Algebraic Geometry Dictionary

Algebraic example Numerical
Geometry in 3-space Analysis

variety collection of points, polynomial system
algebraic curves, and + union of witness sets, see below
algebraic surfaces for the definition of a witness set

irreducible a single point, or polynomial system
variety a single curve, or + witness set

a single surface + probability-one membership test

generic point random point on point in witness set; a witness point
on an an algebraic is a solution of polynomial system on the

irreducible curve or surface variety and on a random slice whose
variety codimension is the dimension of the variety

pure one or more points, or polynomial system
dimensional one or more curves, or + set of witness sets of same dimension
variety one or more surfaces + probability-one membership tests

irreducible several pieces polynomial system
decomposition of different + array of sets of witness sets and
of a variety dimensions probability-one membership tests
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Randomization and Embedding

Overconstrained systems, e.g.: f = (f1, f2, . . . , f5), with x = (x1, x2, x3).

randomization: choose random complex numbers aij :

���
� ��

�

f1(x) + a11f4(x) + a12f5(x) = 0

f2(x) + a21f4(x) + a22f5(x) = 0

f3(x) + a31f4(x) + a32f5(x) = 0

embedding: z1 and z2 are slack variables (aij ∈ � again at random):

��������
� �������

�

f1(x) + a11z1 + a12z2 = 0

f2(x) + a21z1 + a22z2 = 0

f3(x) + a31z1 + a32z2 = 0

f4(x) + a41z1 + a42z2 = 0

f5(x) + a51z1 + a52z2 = 0
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Embedding with Slack Variables

The cyclic 4-roots system defines 2 quadrics in C4 :
































































x1 + x2 + x3 + x4 + γ1z = 0

x1x2 + x2x3 + x3x4 + x4x1 + γ2z = 0

x1x2x3 + x2x3x4 + x3x4x1+ x4x1x2 + γ3z = 0

x1x2x3x4 − 1 + γ4z = 0

a0 + a1x1 + a2x2 + a3x3 + a4x4 + z = 0

Original system : 4 equations in x1, x2, x3, and x4.

Cut with random hyperplane to find isolated points.

Slack variable z with random γi, i = 1, 2, 3, 4 : square system.

Solve embedded system to find 4 = 2+2 witness points as isolated

solutions with z = 0.
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A cascade of embeddings

dimension two:

��������
� �������

�

f1(x) + a11z1 + a12z2 = 0

f2(x) + a21z1 + a22z2 = 0

f3(x) + a31z1 + a32z2 = 0

L1(x) + z1 = 0

L2(x) + z2 = 0

-

dimension one:

��������
� �������

�

f1(x) + a11z1 + a12z2 = 0

f2(x) + a21z1 + a22z2 = 0

f3(x) + a31z1 + a32z2 = 0

L1(x) + z1 = 0

z2 = 0

¡
¡

¡ª

dimension zero:

��������
� �������

�

f1(x) + a11z1 = 0

f2(x) + a21z1 = 0

f3(x) + a31z1 = 0

z1 = 0

z2 = 0
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A cascade of homotopies

Denote Ei as an embedding of f(x) = 0 with i random hyperplanes

and i slack variables z = (z1, z2, . . . , zi).

Theorem (Sommese - Verschelde):

1. Solutions with (z1, z2, . . . , zi) = 0 contain degW generic

points on every i-dimensional component W of f(x) = 0.

2. Solutions with (z1, z2, . . . , zi) 6= 0 are regular; and

solution paths defined by

hi(x, z, t) = (1− t)Ei(x, z) + t





Ei−1(x, z)
zi



 = 0

starting at t = 0 with all solutions with zi 6= 0

reach at t = 1 all isolated solutions of Ei−1(x, z) = 0.
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A refined version of Bézout’s theorem

The linear equations added to f(x) = 0 in the cascade of

homotopies do not increase the total degree.

Let f = (f1, f2, . . . , fn) be a system of n polynomial equations

in N variables, x = (x1, x2, . . . , xN ).

Bézout bound:
n
∏

i=1

deg(fi) ≥
N
∑

j=0

µj deg(Wj),

where Wj is a j-dimensional solution component

of f(x) = 0 of multiplicity µj .

Note: j = 0 gives the “classical” theorem of Bézout.
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Solving Systems Incrementally

• Extrinsic and Intrinsic Deformations

extrinsic : defined by explicit equations

intrinsic : following the actual geometry

• Diagonal Homotopies

→ to intersect pure dimensional solution sets

• Intersecting with Hypersurfaces

adding the polynomial equations one after the other we arrive

at an incremental polynomial system solver.
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Extrinsic Homotopy Deformations

f(x) = 0 has k-dimensional solution components. We cut with k

hyperplanes to find isolated solutions = witness sets:

ai0 +

n
∑

j=1

aijxj = 0, i = 1, 2, . . . , k, aij ∈ C random

Sample















f(x) + γz = 0 z = slack

ai0(t) +
n
∑

j=1

aij(t)xj = 0 moving

#witness points =
∑

C ⊆ f−1(0)

dim(C) = k

deg(C)
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Intrinsic Homotopy Deformations

f(x) = 0 has k-dimensional solution components. We cut with a

random affine (n− k)-plane to find witness points :

x(λ) = b +
n−k
∑

i=1

λivi ∈ Cn

The vectors b and vi are choosen at random.

Sample f

(

x(λ, t) = b(t) +
n−k
∑

i=1

λivi(t)

)

= 0

Points on the moving (n− k)-plane are determined by n− k

independent variables λi, i = 1, 2, . . . , n− k.
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Intersecting Hypersurfaces Extrinsicially







f1(x) = 0 x ∈ Cn

L1(x) = 0 n−1 hyperplanes







f2(y) = 0 y ∈ Cn

L2(y) = 0 n−1 hyperplanes

diagonal homotopy extrinsic version









































f1(x) = 0

f2(y) = 0

L1(x) = 0

L2(y) = 0















t+









































f1(x) = 0

f2(y) = 0

x− y = 0

M(y) = 0















(1− t) = 0

At t = 1 : deg(f1)× deg(f2) solutions (x,y) ∈ Cn×n.

At t = 0 : witness points (x = y ∈ Cn) on f−11 (0) ∩ f−12 (0) cut out

by n− 2 hyperplanes M .
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Intersecting Hypersurfaces Intrinsically

Consider a general affine line x(λ) = b + λv ∈ Cn.

f1(x(λ) = b + λv)

deg(f1) values for λ

⋂ f2(y(µ) = b + µv)

deg(f2) values for µ

diagonal

homotopy





f1

f2













x(t)

y(t)







 =





0

0





intrinsic

version

�
�

x(t)

y(t)

�
�

= �
�

b

b

�
�

+ λ �
�

�
�

v

0

�
�

t+ �
�

u1

u1

�
�

(1−t)�
�

+ µ �
�

�
�

0

v

�
�

t+ �
�

u2

u2

�
�

(1−t)�
�

At t = 1 : deg(f1)× deg(f2) solutions (x,y) ∈ Cn×n.

At t = 0 : witness points on x = b + λu1 + µu2, a general 2-plane

defined by a random point b and 2 random vectors u1 and u2.
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Intersecting with Hypersurfaces

Let f(x) = 0 have k-dimensional solution components described

by witness points on a general (n− k)-dimensional affine plane,

i.e.:

f

(

x(λ) = b +
n−k
∑

i=1

λivi

)

= 0.

Let g(x) = 0 be a hypersurface with witness points on a general

affine line, i.e.:

g(x(µ) = b + µw) = 0.

Assuming g(x) = 0 properly cuts one degree of freedom from

f−1(0), we want to find witness points on all

(k − 1)-dimensional components of f−1(0) ∩ g−1(0).
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Computing Nonsingular Solutions Incrementally

Suppose (f1, f2, . . . , fk) defines the system f(x) = 0, x ∈ Cn,

whose solution set is pure dimensional of multiplicity one for all

k = 1, 2, . . . , N ≤ n, i.e.: we find only nonsingular roots if we

slice the solution set of f(x) = 0 with a generic linear space of

dimension n− k.

Main loop in the solver :

for k = 2, 3, . . . , N − 1 do

use a diagonal homotopy to intersect

(f1, f2, . . . , fk)
−1(0) with fk+1(x) = 0,

to find witness points on all (n− k − 1)-dimensional

solution components.
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Software Tools in PHCpack

In computing a numerical irreducible decomposition of a given

polynomial system, we typically run through the following steps:

1. Embed (phc -c) add #random hyperplanes = top dimension,

add slack variables to make the system square

2. Solve (phc -b) solve the system constructed above

3. WitnessGenerate apply a sequence of homotopies to compute

(phc -c) witness point sets on all solution components

4. WitnessClassify filter junk from witness point sets

(phc -f) factor components into irreducible components

Especially step 2 is a computational bottleneck...
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Numerical Elimination Methods

• Elimination = Projection

1. slice component with hyperplanes

2. drop coordinates from samples

3. interpolate at projected samples

• An example: the twisted cubic







y − x2 = 0

z − x3 = 0

1. general slice ax+ by + cz + d = 0, random a, b, c, d ∈ C,

twisted cubic projects to a cubic in the plane.

2. slice restricted to C[x, y], set c = 0, find y − x2 = 0

3. slice restricted to C[x, z], set b = 0, find z − x3 = 0

27
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Application: Spatial Six Positions

Planar Body Guidance (Burmester 1874)

• 5 positions determine 6 circle-point/center-point pairs

• 4 positions give cubic circle-point & center-point curves

Spatial Body Guidance (Schoenflies 1886)

• 7 positions determine 20 sphere-point/center-point pairs

• 6 positions give 10th-degree sphere-point & center-point

curves

Question: Can we confirm this result using continuation?
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Spatial Six Positions: Solution

curve y

curve x

–1.6
–1.2

–0.8
–0.4

0

–0.3
–0.2

–0.1
0

0.1
0.2

0.3
0.4

0.2

0.4

0.6

0.8

Sphere-point/center-point curves are irreducible, degree 10.

An illustration of Numerical Elimination.
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Witness Points

for the Spatial Burmester Problem

• The input polynomial system consists of five quadrics in six

unknowns (x,y).

• The new incremental solver computes 20 witness points in

7s 181ms on Pentium III 1Ghz Windows 2000 PC.

• Projection onto x or y reduces the degree from 20 to 10.
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Exercises

• Consider the adjacent minors of a general 2× 4-matrix:





x11 x12 x13 x14

x21 x22 x23 x24



 f(x) =















x11x22 − x21x12 = 0

x12x23 − x22x13 = 0

x13x24 − x23x14 = 0

Verify that dim(f−1(0)) = 5 and deg(f−1(0)) = 8.

• Consider f(x, y) =







y − x2 = 0

z − x3 = 0
(the twisted cubic).

Use phc -c to generate a special slice in x and y only. Solve the

embedded system with phc -b and use phc -f to find y − x2.
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