Homotopies for Solution Components

Jan Verschelde

Department of Math, Stat & CS University of Illinois at Chicago Chicago, IL 60607-7045, USA *e-mail:* jan@math.uic.edu *web:* www.math.uic.edu/~jan

CIMPA Summer School, Buenos Aires, Argentina 23 July 2003

Plan of the Lecture

1. Numerical Algebraic Geometry Dictionary

witness points and membership tests

2. Homotopies to compute Witness Points

a refined version of Bézout's theorem

3. Diagonal Homotopies

to intersect positive dimensional components of solutions

4. Software and Applications

 $numerical\ elimination\ methods$

Recommended Background Literature

- W. Fulton: Introduction to Intersection Theory in Algebraic Geometry. AMS 1984. Reprinted in 1996.
- W. Fulton: Intersection Theory. Springer 1998, 2nd Edition.
- J. Harris: Algebraic Geometry. A First Course. Springer 1992.
- D. Mumford: Algebraic Geometry I. Complex Projective Varieties. Springer 1995. Reprint of the 1976 Edition.

Solution sets to polynomial systems

System of Polynomials		
n equations, N variables		
points, lines, surfaces,		
sets with multiplicity		
Irreducible Decomposition		
Numerical Representation		
set of witness sets		

Joint Work with A.J. Sommese and C.W. Wampler

- A.J. Sommese and C.W. Wampler: Numerical algebraic geometry. In The Mathematics of Numerical Analysis, ed. by J. Renegar et al., volume 32 of Lectures in Applied Mathematics, 749–763, AMS, 1996.
- A.J. Sommese and JV: Numerical homotopies to compute generic points on positive dimensional algebraic sets. Journal of Complexity 16(3):572–602, 2000.
- A.J. Sommese, JV and C.W. Wampler: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.
- A.J. Sommese, JV and C.W. Wampler: Numerical irreducible decomposition using PHCpack. In Algebra, Geometry, and Software Systems, edited by M. Joswig and N. Takayama, pages 109–130, Springer-Verlag, 2003.
- A.J. Sommese, JV and C.W. Wampler: Homotopies for Intersecting Solution Components of Polynomial Systems. Manuscript, 2003.

An Illustrative Example

$$f(x, y, z) = \begin{cases} (y - x^2)(x^2 + y^2 + z^2 - 1)(x - 0.5) = 0\\ (z - x^3)(x^2 + y^2 + z^2 - 1)(y - 0.5) = 0\\ (y - x^2)(z - x^3)(x^2 + y^2 + z^2 - 1)(z - 0.5) = 0 \end{cases}$$

Irreducible decomposition of $Z = f^{-1}(\mathbf{0})$ is

 $Z = Z_2 \cup Z_1 \cup Z_0 = \{Z_{21}\} \cup \{Z_{11} \cup Z_{12} \cup Z_{13} \cup Z_{14}\} \cup \{Z_{01}\}$ with 1. Z_{21} is the sphere $x^2 + y^2 + z^2 - 1 = 0$, 2. Z_{11} is the line $(x = 0.5, z = 0.5^3)$, 3. Z_{12} is the line $(x = \sqrt{0.5}, y = 0.5)$, 4. Z_{13} is the line $(x = -\sqrt{0.5}, y = 0.5)$, 5. Z_{14} is the twisted cubic $(y - x^2 = 0, z - x^3 = 0)$, 6. Z_{01} is the point (x = 0.5, y = 0.5, z = 0.5).

Witness Sets

- A witness point is a solution of a polynomial system which lies on a set of generic hyperplanes.
 - The <u>number of generic hyperplanes</u> used to isolate a point from a solution component

equals the **dimension** of the solution component.

• The <u>number of witness points</u> on one component cut out by the same set of generic hyperplanes

equals the **degree** of the solution component.

A witness set for a k-dimensional solution component consists of k random hyperplanes and a set of isolated solutions of the system cut with those hyperplanes.

Membership Test

Does the point **z** belong to a component?

- Given: a point in space $\mathbf{z} \in \mathbb{C}^N$; a system $f(\mathbf{x}) = \mathbf{0}$; and a witness set W, W = (Z, L): for all $\mathbf{w} \in Z : f(\mathbf{w}) = \mathbf{0}$ and $L(\mathbf{w}) = \mathbf{0}$.
- 1. Let $L_{\mathbf{z}}$ be a set of hyperplanes through \mathbf{z} , and define

$$h(\mathbf{x},t) = \begin{cases} f(\mathbf{x}) = \mathbf{0} \\ L_{\mathbf{z}}(\mathbf{x})t + L(\mathbf{x})(1-t) = \mathbf{0} \end{cases}$$

Trace all paths starting at w ∈ Z, for t from 0 to 1.
 The test (z, 1) ∈ h⁻¹(0)? answers the question above.

Νι	umerical Algebraic	c Geometry Dictionary
Algebraic Geometry	example in 3-space	Numerical Analysis
variety	collection of points, algebraic curves, and algebraic surfaces	 polynomial system + union of witness sets, see below for the definition of a witness set
irreducible variety	a single point, or a single curve, or a single surface	polynomial system + witness set + probability-one membership test
generic point on an irreducible variety	random point on an algebraic curve or surface	point in witness set; a witness point is a solution of polynomial system on the variety and on a random slice whose codimension is the dimension of the variety
pure dimensional varietyone or more points, or one or more curves, or one or more surfaces		polynomial system + set of witness sets of same dimension + probability-one membership tests
irreducible decomposition of a variety	several pieces of different dimensions	polynomial system + array of sets of witness sets and probability-one membership tests

Randomization and Embedding

Overconstrained systems, e.g.: $f = (f_1, f_2, \dots, f_5)$, with $\mathbf{x} = (x_1, x_2, x_3)$.

randomization: choose random complex numbers a_{ij} :

$$\begin{cases} f_1(\mathbf{x}) + a_{11}f_4(\mathbf{x}) + a_{12}f_5(\mathbf{x}) = 0\\ f_2(\mathbf{x}) + a_{21}f_4(\mathbf{x}) + a_{22}f_5(\mathbf{x}) = 0\\ f_3(\mathbf{x}) + a_{31}f_4(\mathbf{x}) + a_{32}f_5(\mathbf{x}) = 0 \end{cases}$$

embedding: z_1 and z_2 are slack variables ($a_{ij} \in \mathbb{C}$ again at random):

$$f_{1}(\mathbf{x}) + a_{11}z_{1} + a_{12}z_{2} = 0$$

$$f_{2}(\mathbf{x}) + a_{21}z_{1} + a_{22}z_{2} = 0$$

$$f_{3}(\mathbf{x}) + a_{31}z_{1} + a_{32}z_{2} = 0$$

$$f_{4}(\mathbf{x}) + a_{41}z_{1} + a_{42}z_{2} = 0$$

$$f_{5}(\mathbf{x}) + a_{51}z_{1} + a_{52}z_{2} = 0$$

Embedding with Slack Variables

The cyclic 4-roots system defines 2 quadrics in \mathbb{C}^4 :

$$\begin{cases} \begin{cases} x_1 + x_2 + x_3 + x_4 + \gamma_1 z = 0\\ x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_1 + \gamma_2 z = 0\\ x_1 x_2 x_3 + x_2 x_3 x_4 + x_3 x_4 x_1 + x_4 x_1 x_2 + \gamma_3 z = 0\\ x_1 x_2 x_3 x_4 - 1 + \gamma_4 z = 0\\ a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + z = 0 \end{cases}$$

Original system : 4 equations in x_1, x_2, x_3 , and x_4 .
Cut with random hyperplane to find isolated points.

Slack variable z with random γ_i , i = 1, 2, 3, 4: square system.

Solve embedded system to find 4 = 2+2 witness points as isolated solutions with z = 0.

A cascade of embeddings

dimension one:

dimension two:

dimension zero:

$$f_{1}(\mathbf{x}) + a_{11}z_{1} = 0$$

$$f_{2}(\mathbf{x}) + a_{21}z_{1} = 0$$

$$f_{3}(\mathbf{x}) + a_{31}z_{1} = 0$$

$$z_{1} = 0$$

$$z_{2} = 0$$

A cascade of homotopies

Denote \mathcal{E}_i as an embedding of $f(\mathbf{x}) = \mathbf{0}$ with *i* random hyperplanes and *i* slack variables $\mathbf{z} = (z_1, z_2, \dots, z_i)$.

Theorem (Sommese - Verschelde):

- 1. Solutions with $(z_1, z_2, ..., z_i) = \mathbf{0}$ contain deg W generic points on every *i*-dimensional component W of $f(\mathbf{x}) = \mathbf{0}$.
- 2. Solutions with $(z_1, z_2, \ldots, z_i) \neq \mathbf{0}$ are regular; and solution paths defined by

$$h_i(\mathbf{x}, \mathbf{z}, t) = (1 - t)\mathcal{E}_i(\mathbf{x}, \mathbf{z}) + t \begin{pmatrix} \mathcal{E}_{i-1}(\mathbf{x}, \mathbf{z}) \\ z_i \end{pmatrix} = \mathbf{0}$$

starting at t = 0 with all solutions with $z_i \neq 0$ reach at t = 1 all isolated solutions of $\mathcal{E}_{i-1}(\mathbf{x}, \mathbf{z}) = \mathbf{0}$.

A refined version of Bézout's theorem

The linear equations added to $f(\mathbf{x}) = \mathbf{0}$ in the cascade of homotopies do not increase the total degree.

Let $f = (f_1, f_2, \dots, f_n)$ be a system of *n* polynomial equations in *N* variables, $\mathbf{x} = (x_1, x_2, \dots, x_N)$.

Bézout bound:
$$\prod_{i=1}^{n} \deg(f_i) \ge \sum_{j=0}^{N} \mu_j \deg(W_j),$$

where W_j is a *j*-dimensional solution component of $f(\mathbf{x}) = \mathbf{0}$ of multiplicity μ_j .

Note: j = 0 gives the "classical" theorem of Bézout.

Solving Systems Incrementally

- Extrinsic and Intrinsic Deformations
 - **extrinsic :** defined by explicit equations
 - intrinsic : following the actual geometry
- Diagonal Homotopies
 - \rightarrow to intersect pure dimensional solution sets
- Intersecting with Hypersurfaces

adding the polynomial equations one after the other we arrive at an incremental polynomial system solver.

Extrinsic Homotopy Deformations

 $f(\mathbf{x}) = \mathbf{0}$ has k-dimensional solution components. We cut with k hyperplanes to find isolated solutions = witness sets:

$$a_{i0} + \sum_{j=1}^{n} a_{ij} x_j = 0, \quad i = 1, 2, \dots, k, \quad a_{ij} \in \mathbb{C}$$
 random

Sample
$$\begin{cases} f(\mathbf{x}) + \gamma \mathbf{z} = 0 & \mathbf{z} = slack\\ a_{i0}(t) + \sum_{j=1}^{n} a_{ij}(t) x_j = 0 & moving \end{cases}$$

#witness points =
$$\sum_{\substack{C \subseteq f^{-1}(0)\\\dim(C) = k}} \deg(C)$$

Intrinsic Homotopy Deformations

 $f(\mathbf{x}) = \mathbf{0}$ has k-dimensional solution components. We cut with a random affine (n - k)-plane to find witness points :

$$\mathbf{x}(\lambda) = \mathbf{b} + \sum_{i=1}^{n-k} \lambda_i \mathbf{v}_i \in \mathbb{C}^n$$

The vectors \mathbf{b} and \mathbf{v}_i are choosen at random.

Sample
$$f\left(\mathbf{x}(\lambda,t) = \mathbf{b}(t) + \sum_{i=1}^{n-k} \lambda_i \mathbf{v}_i(t)\right) = \mathbf{0}$$

Points on the moving (n-k)-plane are determined by n-kindependent variables λ_i , i = 1, 2, ..., n-k.

Intersecting Hypersurfaces Extrinsicially

$$f_1(\mathbf{x}) = 0 \quad \mathbf{x} \in \mathbb{C}^n$$

 $L_1(\mathbf{x}) = \mathbf{0}_{n-1 \text{ hyperplanes}}$

$$f_2(\mathbf{y}) = 0 \quad \mathbf{y} \in \mathbb{C}^n$$

 $L_2(\mathbf{y}) = \mathbf{0}_{n-1 \text{ hyperplanes}}$

diagonal homotopy

extrinsic version

$$\begin{cases} f_1(\mathbf{x}) = 0 \\ f_2(\mathbf{y}) = 0 \\ L_1(\mathbf{x}) = \mathbf{0} \\ L_2(\mathbf{y}) = \mathbf{0} \end{cases} t + \begin{pmatrix} f_1(\mathbf{x}) = 0 \\ f_2(\mathbf{y}) = 0 \\ \mathbf{x} - \mathbf{y} = \mathbf{0} \\ M(\mathbf{y}) = \mathbf{0} \end{pmatrix} (1 - t) = \mathbf{0}$$

At t = 1: deg $(f_1) \times deg(f_2)$ solutions $(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{n \times n}$.

At t = 0: witness points $(\mathbf{x} = \mathbf{y} \in \mathbb{C}^n)$ on $f_1^{-1}(0) \cap f_2^{-1}(0)$ cut out by n - 2 hyperplanes M.

Intersecting with Hypersurfaces

Let $f(\mathbf{x}) = \mathbf{0}$ have k-dimensional solution components described by witness points on a general (n - k)-dimensional affine plane, i.e.:

$$f\left(\mathbf{x}(\lambda) = \mathbf{b} + \sum_{i=1}^{n-k} \lambda_i \mathbf{v}_i\right) = \mathbf{0}.$$

Let $g(\mathbf{x}) = 0$ be a hypersurface with witness points on a general affine line, i.e.:

$$g(\mathbf{x}(\mu) = \mathbf{b} + \mu \mathbf{w}) = 0.$$

Assuming $g(\mathbf{x}) = 0$ properly cuts one degree of freedom from $f^{-1}(\mathbf{0})$, we want to find witness points on all (k-1)-dimensional components of $f^{-1}(\mathbf{0}) \cap g^{-1}(0)$.

Computing Nonsingular Solutions Incrementally

Suppose (f_1, f_2, \ldots, f_k) defines the system $f(\mathbf{x}) = \mathbf{0}, \mathbf{x} \in \mathbb{C}^n$, whose solution set is pure dimensional of multiplicity one for all $k = 1, 2, \ldots, N \leq n$, i.e.: we find only nonsingular roots if we slice the solution set of $f(\mathbf{x}) = \mathbf{0}$ with a generic linear space of dimension n - k.

Main loop in the solver :

for k = 2, 3, ..., N - 1 do use a diagonal homotopy to intersect $(f_1, f_2, ..., f_k)^{-1}(\mathbf{0})$ with $f_{k+1}(\mathbf{x}) = 0$, to find witness points on all (n - k - 1)-dimensional solution components.

Software Tools in PHCpack

In computing a numerical irreducible decomposition of a given polynomial system, we typically run through the following steps:

1.	Embed (phc -c)	add $\#$ random hyperplanes = top dimension,	
		add slack variables to make the system square	
2.	Solve (phc -b)	solve the system constructed above	
3.	${f Witness Generate}$	apply a sequence of homotopies to compute	
	(phc -c)	witness point sets on all solution components	
4.	${f WitnessClassify}$	filter junk from witness point sets	
	(phc -f)	factor components into irreducible components	
Especially step 2 is a computational bottleneck			

Numerical Elimination Methods

- Elimination = Projection
 - 1. slice component with hyperplanes
 - 2. drop coordinates from samples
 - 3. interpolate at projected samples

• An example: the twisted cubic
$$\begin{cases} y - x^2 = 0\\ z - x^3 = 0 \end{cases}$$

- 1. general slice ax + by + cz + d = 0, random $a, b, c, d \in \mathbb{C}$, twisted cubic projects to a cubic in the plane.
- 2. slice restricted to $\mathbb{C}[x, y]$, set c = 0, find $y x^2 = 0$
- 3. slice restricted to $\mathbb{C}[x, z]$, set b = 0, find $z x^3 = 0$

Application: Spatial Six Positions

Planar Body Guidance (Burmester 1874)

- 5 positions determine 6 circle-point/center-point pairs
- 4 positions give cubic circle-point & center-point curves

Spatial Body Guidance (Schoenflies 1886)

- 7 positions determine 20 sphere-point/center-point pairs
- 6 positions give 10th-degree sphere-point & center-point curves

Question: Can we confirm this result using continuation?

Witness Points

for the Spatial Burmester Problem

- The input polynomial system consists of five quadrics in six unknowns (**x**, **y**).
- The new incremental solver computes 20 witness points in 7s 181ms on Pentium III 1Ghz Windows 2000 PC.
- Projection onto \mathbf{x} or \mathbf{y} reduces the degree from 20 to 10.

Exercises

• Consider the adjacent minors of a general 2×4 -matrix:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \end{bmatrix} \qquad f(\mathbf{x}) = \begin{cases} x_{11}x_{22} - x_{21}x_{12} = 0 \\ x_{12}x_{23} - x_{22}x_{13} = 0 \\ x_{13}x_{24} - x_{23}x_{14} = 0 \end{cases}$$

Verify that $\dim(f^{-1}(\mathbf{0})) = 5$ and $\deg(f^{-1}(\mathbf{0})) = 8$.

• Consider $f(x,y) = \begin{cases} y - x^2 = 0 \\ z - x^3 = 0 \end{cases}$ (the twisted cubic).

Use phc -c to generate a special slice in x and y only. Solve the embedded system with phc -b and use phc -f to find $y - x^2$.