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problem statement

A polynomial homotopy is a family of polynomial systems,
where the systems in the family depend on one parameter.

Problem:

If for one parameter we know a regular solution,
then what is the nearest value of the parameter for which

the solution in the polynomial homotopy is singular?
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detecting nearby singularities

Applying the ratio theorem of Fabry, we can detect singular points
based on the coefficients of the Taylor series.

Theorem (the ratio theorem, Fabry 1896)

If for the series x(t) = c0 + c1t + c2t2 + · · ·+ cntn + cn+1tn+1 + · · · ,
we have lim

n→∞
cn/cn+1 = z, then

z is a singular point of the series, and
it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is less than |z|.

The ratio cn/cn+1 is the pole of Padé approximants of degrees [n/1]
(n is the degree of the numerator, with linear denominator).
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the ratio theorem of Fabry and Padé approximants

Consider n = 3, x(t) = c0 + c1t + c2t2 + c3t3 + c4t4.

[3/1] =
a0 + a1t + a2t2 + a3t3

1 + b1t

(c0 + c1t + c2t2 + c3t3 + c4t4)(1 + b1t) = a0 + a1t + a2t2 + a3t3

c0 + c1t + c2t2 + c3t3 + c4t4

+ b1c0t + b1c1t2 + b1c2t3 + b1c3t4 = a0 + a1t + a2t2 + a3t3

We solve for b1 in the term for t4: c4 + b1c3 = 0⇒ b1 = −c4/c3.

The denominator of [3/1] is 1− c4/c3t . The pole of [3/1] is c3/c4.

Jan Verschelde (UIC) Locating the Closest Singularity AMS Meeting, 27 March 2022 5 / 22



prior work

N. Bliss and J. Verschelde. The method of Gauss–Newton to
compute power series solutions of polynomial homotopies.
Linear Algebra and its Applications, 542:569–588, 2018.

S. Telen, M. Van Barel, and J. Verschelde.
A Robust Numerical Path Tracking Algorithm
for Polynomial Homotopy Continuation.
SIAM Journal on Scientific Computing 42(6):A3610–A3637, 2020.

S. Telen, M. Van Barel, and J. Verschelde. Robust numerical
tracking of one path of a polynomial homotopy on parallel
shared memory computers. In the Proceedings of the 22nd
International Workshop on Computer Algebra in Scientific
Computing (CASC 2020), pages 563–582. Springer-Verlag, 2020.

Extensive computational experiments demonstrated that eight terms in
the Taylor series in the solutions are sufficient to avoid a singularity.
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influences

1 computational algebraic geometry

G. Jeronimo, G. Matera, P. Solernó, and A. Waissbein.
Deformation techniques for sparse systems.
Foundations of Computational Mathematics, 9:1–50, 2009.

2 the Chebfun project

T. A. Driscoll, N. Hale, and L. N. Trefethen, editors.
Chebfun Guide. Pafnuty Publications, Oxford, 2014.

3 parallel computers and multiple double precision

Graphics processing units capable of teraflop performance
can offset the overhead of multiple double precision arithmetic,
provided by QDlib [Y. Hida, X. S Li, and D. H. Bailey, 2001] and by
CAMPARY [M. Joldes, J.-M. Muller, V. Popescu, and W. Tucker, 2014].
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Taylor series of roots of a polynomial homotopy

Consider the homotopy

h(x , t) = x2 − 1 + t = 0,

where x is the variable and t the parameter.

At t = 0, the solutions are x = ±1.
At t = 1, we have the double root x = 0.

In this test problem, starting at t = 0,
we compute 1 as the nearest singularity.
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paths defined by h(x , t) = x2 − 1 + t = 0
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slow convergence

The homotopy h(x , t) = x2 − 1 + t = 0 is equivalent to x2 = 1− t .

Develop the solution x(t) =
√

1− t in a Taylor series about t = 0.

The ratio of the coefficients
cn

cn+1
is f (n) =

2(n + 1)
2n − 1

.

Problem:
f( 2) = 2.00000000000000
f( 4) = 1.42857142857143
f( 8) = 1.20000000000000
f( 16) = 1.09677419354839
f( 32) = 1.04761904761905
f( 64) = 1.02362204724409
f(128) = 1.01176470588235
f(256) = 1.00587084148728
f(512) = 1.00293255131965

Very slow convergence!
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the regularity of the errors

E = |f (n)− 1| and R is the ratio between two consecutive errors.

f( 2) = 2.00000000000000 E = 1.00e+00
f( 4) = 1.42857142857143 E = 4.29e-01 R = 2.33e+00
f( 8) = 1.20000000000000 E = 2.00e-01 R = 2.14e+00
f( 16) = 1.09677419354839 E = 9.68e-02 R = 2.07e+00
f( 32) = 1.04761904761905 E = 4.76e-02 R = 2.03e+00
f( 64) = 1.02362204724409 E = 2.36e-02 R = 2.02e+00
f(128) = 1.01176470588235 E = 1.18e-02 R = 2.01e+00
f(256) = 1.00587084148728 E = 5.87e-03 R = 2.00e+00
f(512) = 1.00293255131965 E = 2.93e-03 R = 2.00e+00

The error is proportional to
1
n

and is halved each time we double n.

To gain one bit of accuracy the number of coefficients must be doubled.
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applying extrapolation

Input: f (2), f (4), f (8), . . ., f (2N).

Output: Ri,j , the triangular table of extrapolated values.

1 The first column: Ri,1 = f (2i), for i = 1,2,3, . . . ,N.

2 The next columns in the table are computed via

Ri,j =
2iRi,j−1 − R1,j−1

2i − 1
,

for j = i , i + 1, . . . ,N and for i = 2,3, . . . ,N.
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the results of the extrapolation

f( 2) = 2.00000000000000
f( 4) = 1.42857142857143 R( 4, 4) = 0.85714285714286
f( 8) = 1.20000000000000 R( 8, 8) = 1.00952380952381
f(16) = 1.09677419354839 R(16,16) = 0.99969278033794
f(32) = 1.04761904761905 R(32,32) = 1.00000487650257
f(64) = 1.02362204724409 R(64,64) = 0.99999996160234

The errors in the extrapolation |Ri,j − 1|:

2 : 1.0e+00
4 : 4.3e-01 1.4e-01
8 : 2.0e-01 6.7e-02 9.5e-03

16 : 9.7e-02 3.2e-02 4.6e-03 3.1e-04
32 : 4.8e-02 1.6e-02 2.3e-03 1.5e-04 4.9e-06
64 : 2.4e-02 7.9e-03 1.1e-03 7.5e-05 2.4e-06 3.8e-08

The extrapolated value is 0.99999996160234 with error 3.8e-08.
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a hyperbola twice cut{
x2 = 1− t
xy = 1− t

At t = 0:
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triangular structure and substitution

{
x2

1 = 1− t
x1x2 = 1− t

The Taylor series for x1(t)

−1 + a1t + a2t2 + · · · and + 1 + b1t + b2t2 + · · ·

are invertible because x(0) 6= 0.

Substitute the series into the next equation:

x2(t) =
1− t
x1(t)

to reduce the many variables case to the one variable case.
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unimodular coordinate transformations

Reduce xa
1 xb

2 to yd
1 by the greatest common divisor:

d = gcd(a,b) = ka + `b.

Then a,b, k , ` define the unimodular coordinate transformation U:

U
[

a
b

]
=

[
k `

− b
d

a
d

] [
a
b

]
=

[
d
0

]
.

The matrix-vector multiplication is a coordinate transformation:

xa
1 xb

2 =
(

yk
1 y−b/d

2

)a (
y `

1ya/d
2

)b
= yd

1 .
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software

PHCpack is software for Polynomial Homotopy Continuation,
to solve systems of polynomial equations.

Support for a priori step size control via phc -u,
added to version 2.4.72, released 1 September 2019.

Available under the GPL-3.0 license at
https://github.com/janverschelde/PHCpack
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a random 4-dimensional monomial homotopy

Consider

xA = 1− t , A =


7 7 0 0
7 3 5 7
7 2 1 2
7 0 1 2

 , det(A) = −42.

The monomial homotopy is

h(x, t) =


x7

1 x7
2 x7

3 x7
4 = 1− t

x7
1 x3

2 x2
3 = 1− t

x5
2 x4

3 = 1− t
x7

2 x2
3 x2

4 = 1− t .

At t = 0, (1,1,1,1) is one of the 42 solutions.
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in double precision, extrapolating on x1(t)

f( 2) = 1.96874999999999
f( 4) = 1.41891891892034 R( 4, 4) = 0.86908783784070
f( 8) = 1.19620253165939 R( 8, 8) = 1.00828557991769
f(16) = 1.09509202184358 R(16,16) = 0.99974583285467
f(32) = 1.04682884602505 R(32,32) = 1.00000726557726
f(64) = 1.02320337390705 R(64,64) = 0.99987907919821

The errors in the extrapolation |Ri,j − 1|:

2 : 9.7e-01
4 : 4.2e-01 1.3e-01
8 : 2.0e-01 6.1e-02 8.3e-03
16 : 9.5e-02 3.0e-02 4.0e-03 2.5e-04
32 : 4.7e-02 1.5e-02 2.0e-03 1.2e-04 7.3e-06
64 : 2.3e-02 7.3e-03 9.4e-04 1.1e-04 5.7e-05 1.2e-04

The coefficients of the original series are not accurate enough.
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on coefficients computed in double double precision

f( 2) = 1.96875000000000
f( 4) = 1.41891891891892 R( 4, 4) = 0.86908783783784
f( 8) = 1.19620253164557 R( 8, 8) = 1.00828557988368
f(16) = 1.09509202453988 R(16,16) = 0.99974584110786
f(32) = 1.04682779456193 R(32,32) = 1.00000383925819
f(64) = 1.02323838080960 R(64,64) = 0.99999997121995

The errors in the extrapolation |Ri,j − 1|:

2 : 9.7e-01
4 : 4.2e-01 1.3e-01
8 : 2.0e-01 6.1e-02 8.3e-03
16 : 9.5e-02 3.0e-02 4.0e-03 2.5e-04
32 : 4.7e-02 1.5e-02 2.0e-03 1.3e-04 3.8e-06
64 : 2.3e-02 7.3e-03 9.8e-04 6.2e-05 1.9e-06 2.9e-08

Extrapolated on coefficients computed with 32 decimal places.
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setting the convergence radius to one

Consider cn the coefficient of tn in the Taylor series.

What happens if n grows:

∣∣∣∣ cn

cn+1

∣∣∣∣→


< 1 : coefficients increase,
= 1 : coefficients are constant,
> 1 : coefficients decrease.

Let x(t) satisfy h(x(t), t) = 0, then

x
(∣∣∣∣ cn

cn+1

∣∣∣∣ t)
has convergence radius one.

Therefore, work with the homotopy h(x , s) = 0, where s =

∣∣∣∣ cn

cn+1

∣∣∣∣ t .
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conclusions

Let cn be the n-th coefficient of a Taylor series, according to Fabry:

as n→∞,
cn

cn+1
→ nearest singularity.

Preliminary experimental results:
The convergence of the series tends to be very slow.
Extrapolation on series with 66 coefficients can already
give 8 decimal places of accuracy.
Monomial homotopies are good test cases.
Multiple double precision may be needed.

Once the radius R = |cn/cn+1| is accurately computed,
work with s = R t in the polynomial homotopy.
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