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Problem Statement

Polyhedral homotopies solve polynomial systems via degenerations to
initial form systems, systems supported on faces of Newton polytopes:

1 no diverging paths for generic coefficients,
2 the sparser the system, the faster we can solve,
3 as blackbox used for numerical algebraic geometry.

Two questions:

symbolic-numeric (exact+approximate) data structures ?

exploitation of (permutation) symmetry ?

A.N. Jensen, H. Markwig, and T. Markwig: An algorithm for lifting
points in a tropical variety. Collectanea Math. 59(2): 129–165, 2008.
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Limits of Algebraic Sets

Let the system f (x) = 0 define a curve and consider
{

f (x) = 0(
�1(x) = 0

)
t +

(
x1 − z1 = 0

)
(1 − t)

moving from a general hyperplane �1(x) = 0 to x1 − z1 = 0,
where z1 is the first coordinate of z ∈ f−1(0).

For t going from 1 to 0 in the homotopy
{

f (x) = 0
x1 − z1t = 0

we push x1 outside C
∗, C∗ = C \ {0}.

As t → 0, in a polyhedral end game, applying Bernshte ı̌n’s theorem B,
f must have ≥ 2 monomials in every equation for a solution ∈ (C∗)n.
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Initial Forms

System f (x) = 0 has an algebraic set
⇒ f has initial form with ≥ 2 terms/equation.

Let v �= 0 and denote 〈a,v〉 = a1v1 + a2v2 + · · ·+ anvn.

Then inv(f ) is the initial form of f in the direction of v:

inv(f ) =
∑

a ∈ A
〈a,v〉 = m

caxa, for f =
∑
a∈A

caxa

where m = min{ 〈a,v〉 | a ∈ A }. We say: A supports f .

A system f = (f1, f2, . . . , fn) is supported on (A1,A2, . . . ,An).

We look for v so that inv(f )(x) = 0 has solutions in (C∗)n.
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Solving the cyclic 4-roots System

f (x) =




x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0

One tropism v = (+1,−1,+1,−1) with inv(f )(z) = 0:

inv(f )(x) =




x2 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x2x3x4 + x4x1x2 = 0
x1x2x3x4 − 1 = 0




x1 = y+1
1

x2 = y−1
1 y2

x3 = y+1
1 y3

x4 = y−1
1 y4

The system inv(f )(y) = 0 has two solutions.
We find two solution curves:

(
t ,−t−1,−t , t−1

)
and

(
t , t−1,−t ,−t−1

)
.

Sparse Polynomial Systems have Sparse Solutions
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the Cayley embedding

A nonzero vector v is a pretropism for the system f (x) = 0
if #inv(fk ) ≥ 2 for all k ranging from 1 to n.

Every tropism is a pretropism, but not every pretropism is a tropism, as
pretropisms depend only on supports A = (A1,A2, . . . ,An) of f .

Via the Cayley embedding we reduce A to one set:

EA = (A1 × {0}) ∪ (A2 × {e1}) ∪ · · · ∪ (An × {en−1})

where ek is the k-th (n − 1)-dimensional unit vector.

Claim: enumerating all facet normals to conv(EA) yields all tropisms.

1 Tropisms for curves are normals to facets spanned
by at least two points of each support.

2 Tropisms for surfaces are cones spanned by tropisms for curves.
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running cddlib

We run cddlib Version 0.94b of Komei Fukuda to compute
H-representation of the points in the Cayley embedding.

The H-representation of a polytope contains all facet inequalities,
all half planes that define the polytope.

On cyclic 8-roots: 831 facet normals,
computed in less than one second.

On cyclic 9-roots: 4,840 facet normals,
computed in just one second.

On cyclic 12-roots: 907,923 facet normals,
took about 148.5 hours (one week).

Ran on one core of 3.07Ghz Linux with 4Gb RAM.
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Processing Pretropisms
Filtering the normals to the facets of the Cayley polytope:

Some facets are spanned by only one vertex of a polytope.

Exploitation of permutation symmetry, for example:
cyclic n-roots has group of size 2n, generated by

x 	→ (x2, x3, . . . , xn, x1) and x 	→ (xn, xn−1, . . . , x2, x1).

It suffices to process one pretropism per orbit.

We let x1 = tv1 , t → 0, need positive first component: v1 > 0.

Processing pretropisms in two stages:
1 Find the leading coefficient of the Puiseux series.

A solution to the initial form system may satisfy the entire system!
2 Find the second term of the Puiseux series.

Then we have a valid starting point to develop the algebraic set
with symbolic or numeric methods.
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An Illustrative Example
for a numerical irreducible decomposition

f (x1, x2, x3) =




(x2 − x2
1 )(x

2
1 + x2

2 + x2
3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x

2
1 + x2

2 + x2
3 − 1)(x2 − 0.5) = 0

(x2 − x2
1 )(x3 − x3

1 )(x
2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0

f−1(0) = Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}
1 Z21 is the sphere x2

1 + x2
2 + x2

3 − 1 = 0,
2 Z11 is the line (x1 = 0.5, x3 = 0.53),
3 Z12 is the line (x1 =

√
0.5, x2 = 0.5),

4 Z13 is the line (x1 = −√
0.5, x2 = 0.5),

5 Z14 is the twisted cubic (x2 − x2
1 = 0, x3 − x3

1 = 0),
6 Z01 is the point (x1 = 0.5, x2 = 0.5, x3 = 0.5).
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The Illustrative Example
numerically computing positive dimensional solution sets

Used in two papers in numerical algebraic geometry:

first cascade of homotopies: 197 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical
decomposition of the solution sets of polynomial systems into irreducible
components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.

equation-by-equation solver: 13 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving polynomial
systems equation by equation. In Algorithms in Algebraic Geometry,
Volume 146 of The IMA Volumes in Mathematics and Its Applications,
pages 133–152, Springer-Verlag, 2008.

The mixed volume of the Newton polytopes of this system is 124.
By theorem A of Bernshteı̌n, the mixed volume is an upper bound on
the number of isolated solutions.
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Three Newton Polytopes

f (x1, x2, x3) =




(x2 − x2
1 )(x

2
1 + x2

2 + x2
3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x

2
1 + x2

2 + x2
3 − 1)(x2 − 0.5) = 0

(x2 − x2
1 )(x3 − x3

1 )(x
2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0
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Gift Wrapping for Tropisms

Gift wrapping is an algorithm to compute the convex hull,
every (d − 2)-dimensional face of a d-dimensional polytope is the
intersection of two facets.

We call a face(t) pretropism an inner normal to a face(t) common to all
Newton polytopes. Then a pretropism is an edge pretropism.

For the illustrative example, the facet pretropisms are

(1,0,0), (0,1,0), (0,0,1), and (−1,−1,−1),

the inner normals to the unit simplex,

the Newton polytope of the common factor.

Looking for edge pretropisms: first look at a pair of polytopes.
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Looking for Solution Curves
The twisted cubic is (x1 = t , x2 = t2, x3 = t3).

We look for solutions of the form



x1 = tv1 , v1 > 0,

x2 = c2tv2 , c2 ∈ C∗,

x3 = c3tv3 , c3 ∈ C
∗.

Substitute x1 = t , x2 = c2t2, x3 = c3t3 into f

f (x1 = t , x2 = c2t2, x3 = c3t3) =




(0.5c2 − 0.5)t2 + O(t3) = 0

(0.5c3 − 0.5)t3 + O(t5) = 0

0.5(c2 − 1.0)(c3 − 1.0)t5 + O(t7)

→ conditions on c2 and c3.

How to see (v1, v2, v3) = (1,2,3)?
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Faces of Newton Polytopes
Looking at the Newton polytopes in the direction v = (1,2,3):

Selecting those monomials supported on the faces

invf (x1, x2, x3) =




0.5x2 − 0.5x2
1 = 0

0.5x3 − 0.5x3
1 = 0

−0.5x2x3
1 − 0.5x3x2

1 + 0.5x3x2 + 0.5x5
1 = 0
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Degenerating the Sphere

f (x1, x2, x3) =




(x2 − x2
1 )(x

2
1 + x2

2 + x2
3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x

2
1 + x2

2 + x2
3 − 1)(x2 − 0.5) = 0

(x2 − x2
1 )(x3 − x3

1 )(x
2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0

As x1 = t → 0:

in(1,0,0)f (x1, x2, x3)




x2(x2
2 + x2

3 − 1)(−0.5) = 0

x3(x2
2 + x2

3 − 1)(x2 − 0.5) = 0

x2x3(x2
2 + x2

3 − 1)(x3 − 0.5) = 0

As x2 = s → 0:

in(0,1,0)f (x1, x2, x3)




−x2
1 (x

2
1 + x2

3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x

2
1 + x2

3 − 1)(−0.5) = 0

−x2
1 (x3 − x3

1 )(x
2
1 + x2

3 − 1)(x3 − 0.5) = 0
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More Faces of Newton Polytopes
Looking at the Newton polytopes along v = (1,0,0) and v = (0,1,0):

in(1,0,0)f (x1, x2, x3) =


x2(x2
2 + x2

3 − 1)(−0.5)

x3(x2
2 + x2

3 − 1)(x2 − 0.5)

x2x3(x2
2 + x2

3 − 1)(x3 − 0.5)

in(0,1,0)f (x1, x2, x3) =


−x2
1 (x

2
1 + x2

3 − 1)(x1 − 0.5)

(x3 − x3
1 )(x

2
1 + x2

3 − 1)(−0.5)

−x2
1 (x3 − x3

1 )(x
2
1 + x2

3 − 1)(x3 − 0.5)
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Faces of Faces

The sphere degenerates to circles at the coordinate planes.

in(1,0,0)f (x1, x2, x3) =


x2(x2
2 + x2

3 − 1)(−0.5)

x3(x2
2 + x2

3 − 1)(x2 − 0.5)

x2x3(x2
2 + x2

3 − 1)(x3 − 0.5)

in(0,1,0)f (x1, x2, x3) =


−x2
1 (x

2
1 + x2

3 − 1)(x1 − 0.5)

(x3 − x3
1 )(x

2
1 + x2

3 − 1)(−0.5)

−x2
1 (x3 − x3

1 )(x
2
1 + x2

3 − 1)(x3 − 0.5)

Degenerating even more:

in(0,1,0)in(1,0,0)f (x1, x2, x3) =




x2(x2
3 − 1)(−0.5)

x3(x2
3 − 1)(−0.5)

x2x3(x2
3 − 1)(x3 − 0.5)

The factor x2
3 − 1 is shared with in(1,0,0)in(0,1,0)f (x1, x2, x3).
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Representing a Solution Surface

The sphere is two dimensional, x1 and x2 are free:



x1 = t1
x2 = t2
x3 = 1 + c1t2

1 + c2t2
2 .

For t1 = 0 and t2 = 0, x3 = 1 is a solution of x3 − 1 = 0.

Substituting (x1 = t1, x2 = t2, x3 = 1 + c1t2
1 + c2t2

2 )
into the original system gives linear conditions on the coefficients
of the second term: c1 = −0.5 and c2 = −0.5.
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processing pretropisms for cyclic 8-roots

cddlib returned 831 normals to facets of the Cayley polytope

only 101 were pretropisms

after permutation symmetry: 11

up to positive sign of first component: 7

⇒ investigate 7 initial forms, to find 16 curves.
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Transforming Coordinates
to eliminate one variable

The tropism v = (−1,0,0,+1,0,−1,+1,0) defines a change of
coordinates:




z0 = x−1
0

z1 = x0
0 x1

z2 = x0
0 x2

z3 = x+1
0 x3

z4 = x0
0 x4

z5 = x−1
0 x5

z6 = x+1
0 x6

z7 = x0
0 x7

inv(f )(x) =




1 + x5 = 0

x1 + x4x5 + x7 = 0

x1x2 + x7x1 = 0

x5x6x7 + x7x1x2 = 0

x4x5x6x7 + x5x6x7x1 = 0

x1x2x3x4x5 + x4x5x6x7x1

+x5x6x7x1x2 = 0

x4x5x6x7x1x2 + x7x1x2x3x4x5 = 0

x1x2x3x4x5x6x7 − 1 = 0

After clearing x0, inv(f ) consists of 8 equations in 7 unknowns.
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The second Term of a Puiseux Expansion
for a component of the cyclic 8-roots system

Because we find a nonzero solution for the yk coefficients,
we use it as the second term of a Puiseux expansion:




x0 = t1

x1 = ( 0.5 + 0.5i ) t0 + ( −0.5i ) t
x2 = ( 1 + i ) t0 + ( −i ) t
x3 = ( −i ) t0 + ( 1 − i ) t
x4 = ( −0.5 − 0.5i ) t0 + ( 0.5i ) t
x5 = ( −1 ) t0 + ( 0 ) t
x6 = ( i ) t0 + ( −1 + i ) t
x7 = ( −1 − i ) t0 + ( i ) t

i =
√
−1.

Substitute series in f (x): result is O(t2).

Note: exploitation of symmetry is immediate.
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processing pretropisms for cyclic 12-roots

cddlib returned 907,923 normals to facets of the Cayley polytope

after permutation symmetry: 38,229 remained

only 290 of those were pretropisms

up to positive sign of first component: 158 left

Examining v = (−1,+1,−1,+1,−1,+1,−1,+1,−1,+1,−1,+1):
initial form system has mixed volume 49,816.

(Note: mixed volume of original system is 500,352 and increases to 983,952
after added random hyperplane and slack variable.)

Solving initial form system leads to a solution
that satisfies the entire polynomial system.
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An Exact Solution for cyclic 12-roots

For the tropism v = (−1,+1,−1,+1,−1,+1,−1,+1,−1,+1,−1,+1):

z0 = t−1 z1 = t
(

1
2 − 1

2 i
√

3
)

z2 = −t−1 z3 = t
(
−1

2 − 1
2 i
√

3
)

z4 = t−1
(
−1

2 + 1
2 i
√

3
)

z5 = t
(

1
2 + 1

2 i
√

3
)

z6 = −t−1 z7 = t
(
−1

2 + 1
2 i
√

3
)

z8 = t−1 z9 = t
(

1
2 + 1

2 i
√

3
)

z10 = t−1
(

1
2 − 1

2 i
√

3
)

z11 = t
(
−1

2 − 1
2 i
√

3
)

makes the system entirely and exactly equal to zero.
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Conclusions

An apriori certificate for a solution component consists of
1 a tropism: leading powers of a Puiseux series,
2 a root at infinity: leading coefficients of the Puiseux series,
3 the next term in the Puiseux series.

The certificate is compact and easy to verify with substitution.

Preprocessing for more costly representations:

either lifting fibers for a geometric resolution,

or witness sets in a numerical irreducible decomposition.
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