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Outline of Talk:

1. Numerical Homotopy Continuation

2. The software package PHCpack

2.1 transition: isolated → component solutions

2.2 interfaces with Maple and C

3. Numerical Irreducible Decomposition

3.1 a new way to find nonsingular solutions

3.2 computational experiments

4. Conclusions

2



'

&

$

%

1. Numerical Homotopy Algorithms

If we wish to solve f(x) = 0, then we construct a system g(x) = 0

whose solutions are known. Consider the homotopy

H(x, t) := (1− t)g(x) + tf(x) = 0.

By continuation, we trace the paths starting at the known solutions

of g(x) = 0 to the desired solutions of f(x) = 0, for t from 0 to 1.

PHCpack is a software package for Polynomial Homotopy

Continuation, offering a wide varieties of homotopy methods

for solving polynomial systems.
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Homotopy Types

Almost all polynomial systems arising in practical applications

have a special structure. For instance, most polynomial systems

have far fewer isolated solutions than the product of the degrees in

the equations.

The homotopies available in PHCpack are

1. Multi-homogeneous homotopies for product structures;

2. Polyhedral homotopies to exploit sparsity;

3. SAGBI and Pieri homotopies for numerical Schubert

calculus;

4. coefficient-parameter homotopies to study variations of

coefficients and natural parameters.
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2. Release History of PHCpack

March 1995: Pre-release of PHC and MVC, executable versions

on the occasion of the PoSSo Workshop on Software.

August 1997: Release 1.0 of the full Ada 83 sources, executable

versions for SUN, IBM AIX, and DEC Workstations, and

demonstration database of test polynomial systems.

August 1999: Release 2.0 of the rewritten Ada 95 sources,

extended with multi-precision facilities and numerical Schubert

calculus. Executables for SUN, SGI, Linux and Windows PCs.

August 2002: Release 2.1 with β-version of the tools for a

numerical irreducible decomposition and a C interface.
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2.1 PHCpack is menu-driven and file oriented

Welcome to PHC (Polynomial Homotopy Continuation) Version 2.1(beta).

Running in full mode. Note also the following options:

phc -s : Equation and variable Scaling on system and solutions

phc -d : Linear and nonlinear Reduction w.r.t. the total degree

phc -r : Root counting and Construction of start systems

phc -m : Mixed-Volume Computation by four lifting strategies

phc -p : Polynomial Continuation by a homotopy in one parameter

phc -v : Validation, refinement and purification of solutions

phc -e : SAGBI/Pieri homotopies to intersect linear subspaces

phc -c : Irreducible decomposition for solution components

phc -f : Factor pure dimensional solution set into irreducibles

phc -b : Batch or black-box processing

phc -z : strip phc output solution lists into Maple format

Is the system on a file ? (y/n/i=info)
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Documentation at www.math.uic.edu/˜jan

J. Verschelde: PHC and MVC: two programs for solving polynomial

systems by homotopy continuation. Proceedings of the POSSO

Workshop on Software, pages 165-176. Edited by J.-C. Faugère, J.

Marchand, R. Rioboo, Paris 1-4 March 1995.

J. Verschelde: Homotopy Continuation Methods for Solving

Polynomial Systems. Ph. D. thesis, K.U.Leuven, Dept. of Computer

Science, 1996.

J. Verschelde: Algorithm 795: PHCpack: A general-purpose solver

for polynomial systems by homotopy continuation. ACM

Transactions on Mathematical Software 25(2): 251-276, 1999.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical Irreducible

Decomposition using PHCpack. Proceedings of Dagstuhl Seminar no.

01421, 14–19 October 2001. Edited by M. Joswig and N. Takayama.
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Papers documenting the usefulness of PHCpack

C.W. Wampler: Isotropic coordinates, circularity and Bezout numbers: planar

kinematics from a new perspective. Proceedings of the 1996 ASME Design

Engineering Technical Conference. Irvine, CA, Aug 18–22, 1996. (CD-ROM).

F. Sottile: Real Schubert Calculus: Polynomial systems and a conjecture of

Shapiro and Shapiro. Experimental Mathematics 9(2): 161-182, 2000.

B. Haas: A Simple Counterexample to Kouchnirenko’s Conjecture. Beitraege zur

Algebra und Geometrie/Contributions to Algebra and Geometry, 43(1):1-8, 2002.

E. Lee, C. Mavroidis, and J. Morman: Geometric Design of Spatial 3R

Manipulators. Proceedings of the 2002 NSF Design, Service, and Manufactoring

Grantees and Research Conference, San Juan, Puerto Rico, January 7-10, 2002.

E. Lee and C. Mavroidis: Solving the Geometric Design Problem of Spatial 3R

Robot Manipulators Using Polynomial Continuation. Journal of Mechanical

Design, Transactions of the ASME, 2002 (in press).

F. Xie, G. Reid, and S. Valluri: A numerical method for the one dimensional action

functional for FBG structures. Can J. Phys. 76: 1-21, 2002.
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2.2 Multi-lingual programming

Bjarne Stroustrup : “There never was a single language suitable for all

work, and I doubt there ever will be.” Interview, March 2000.

www.ada2cc.com : “So in converting, you tend to lose the advantages of the

source language while not picking up the advantages of the destination

languages.” from Realistic Technologies, Inc.

Two kinds of interfaces to PHCpack:

high level : with the computer algebra system Maple.

low level : with the programming language C.
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Maple and PHCpack

Computer algebra systems like Maple provide a nice environment

to formulate the polynomial equations.

• Interface requires only an executable version of the solver phc.

• A small Maple procedure

1. writes the system from Maple onto a file input;

2. calls the black-box solver phc -b input output;

3. with phc -z output the solutions are brought into Maple.

• Lightweight interface, only modification to phc is extra option

-z to convert formats for solutions.

The solution format conversion has been used to bring lists of

samples from a curve into Maple for visualization.
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Support for a C interface

We can build a portable interface to the Ada routines in PHCpack

with C functions because...

1. The language Ada

• has the pragma Import construction to call routines from

other languages such as C;

• supports conversions for C integers, doubles, and arrays of

these C types.

2. The gnu-ada compiler

• supports a mechanism to call Ada routines from a C main

program and to call C functions from Ada;

• is integrated in the gcc compilation system.
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Passing Structured Data Types

polynomial in n variables with complex floating-point coefficients

⇐⇒ ( n, #monomials, array of integers (support),

array of doubles (coefficients) )

x2 + 3xy − 5 ⇐⇒ ( 2, 3, 2 0 1 1 0 0, 1.0 0.0 3.0 0.0 -5.0 0.0 )

Programs in Ada or C must define exchange protocols of structured

data types into basic data types for which automatic conversions

are supported.

The next stage in the development of this interface consists in the

passing of polynomial functions and their derivative functions.

→ implementation of an evaluation-based solving.
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C functions calling PHCpack

At this moment, the following C functions call PHCpack :

phc solver.c calls the black-box solver of PHCpack.

pieri solver.c invokes the Pieri homotopies to compute feedback

laws to control linear systems (joint project with Yusong

Wang).

path tracker.c forms interface to path-tracking routines of

PHCpack. Input are target, start system with solutions; the

output are solutions computed at the end of the paths.

Typical sequence of calls:

C function with problem data

→ Ada routine of PHCpack computes

→ C function processes results of PHCpack.
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3. Numerical Irreducible Decomposition

with PHCpack

In computing a numerical irreducible decomposition of a given

polynomial system, we typically run through the following steps:

1. Embed (phc -c) add #random hyperplanes = top dimension,

add slack variables to make the system square

2. Solve (phc -b) solve the system constructed above

3. WitnessGenerate apply a sequence of homotopies to compute

(phc -c) witness point sets on all solution components

4. WitnessClassify filter junk from witness point sets

(phc -f) factor components into irreducible components

Especially step 2 is a computational bottleneck.

We recently discovered and implemented a new algorithm.
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3.1 Solving Systems Incrementally

• Extrinsic and Intrinsic Deformations

extrinsic : defined by explicit equations

intrinsic : following the actual geometry

• Diagonal Homotopies

→ to intersect pure dimensional solution sets

• Intersecting with Hypersurfaces

adding the polynomial equations one after the other we arrive

at an incremental polynomial system solver.
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Extrinsic Homotopy Deformations

f(x) = 0 has k-dimensional solution components. We cut with k

hyperplanes to find isolated solutions = witness points sets :

ai0 +

n∑

j=1

aijxj = 0, i = 1, 2, . . . , k, aij ∈ C random

Sample







f(x) + γz = 0 z = slack

ai0(t) +
n∑

j=1

aij(t)xj = 0 moving

#witness points =
∑

C ⊆ f−1(0)

dim(C) = k

deg(C)
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Embedding with Slack Variables

The cyclic 4-roots system defines 2 quadrics in C4 :












x1 + x2 + x3 + x4 + γ1z = 0

x1x2 + x2x3 + x3x4 + x4x1 + γ2z = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 + γ3z = 0

x1x2x3x4 − 1 + γ4z = 0

a0 + a1x1 + a2x2 + a3x3 + a4x4 + z = 0

Original system : 4 equations in x1, x2, x3, and x4.

Cut with random hyperplane to find isolated points.

Slack variable z with random γi, i = 1, 2, 3, 4 : square system.

Solve embedded system to find 4 = 2+2 witness points as isolated

solutions with z = 0.
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Intrinsic Homotopy Deformations

f(x) = 0 has k-dimensional solution components. We cut with a

random affine (n− k)-plane to find witness points :

x(λ) = b+
n−k∑

i=1

λivi ∈ Cn

The vectors b and vi are choosen at random.

Sample f

(

x(λ, t) = b(t) +
n−k∑

i=1

λivi(t)

)

= 0

Points on the moving (n− k)-plane are determined by n− k

independent variables λi, i = 1, 2, . . . , n− k.
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#independent variables = co-dimension

f(x) = 0 is a system with x ∈ Cn, x lies on an affine (n− k)-plane:

x(λ) = b+
n−k∑

i=1

λivi ∈ Cn

where λ = (λ1, λ2, . . . , λn−k) contains all independent variables.

Correct with Newton on f(x(λ)) = 0, a system in λ.

Solve

[
∂f

∂λ

]

λ = −f(x(λ)) with
∂fi

∂λj
=

n−k∑

l=1

∂fi

∂xl

∂xl

∂λj
.

Overdetermined case moved from global to local level!

no slack variables needed...

19



'

&

$

%

Intersecting Hypersurfaces Extrinsicially







f1(x) = 0 x ∈ Cn

L1(x) = 0 n−1 hyperplanes







f2(y) = 0 y ∈ Cn

L2(y) = 0 n−1 hyperplanes

diagonal homotopy extrinsic version
















f1(x) = 0

f2(y) = 0

L1(x) = 0

L2(y) = 0










t+
















f1(x) = 0

f2(y) = 0

x− y = 0

M(y) = 0










(1− t) = 0

At t = 1 : deg(f1)× deg(f2) solutions (x,y) ∈ Cn×n.

At t = 0 : witness points (x = y ∈ Cn) on f−1
1 (0) ∩ f−1

2 (0) cut out

by n− 2 hyperplanes M .
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Intersecting Hypersurfaces Intrinsically

Consider a general affine line x(λ) = b+ λv ∈ Cn.

f1(x(λ) = b+ λv)

deg(f1) values for λ

⋂ f2(y(λ) = b+ µv)

deg(f2) values for µ

diagonal

homotopy




f1

f2












x(t)

y(t)







 =




0

0




intrinsic

version

�
�

x(t)

y(t)

�
�

= �
�

b

b

�
�

+ λ �
�

�
�

v

0

�
�

t+ �
�

u1

u1
�

�
(1−t)�

�

+ µ �
�

�
�

0

v

�
�

t+ �
�

u2

u2

�
�

(1−t)�
�

At t = 1 : deg(f1)× deg(f2) solutions (x,y) ∈ Cn×n.

At t = 0 : witness points on x = b+ λu1 + µu2, a general 2-plane

defined by a random point b and 2 random vectors u1 and u2.
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Intersecting with Hypersurfaces

Let f(x) = 0 have k-dimensional solution components described

by witness points on a general (n− k)-dimensional affine plane,

i.e.:

f

(

x(λ) = b+
n−k∑

i=1

λivi

)

= 0.

Let g(x) = 0 be a hypersurface with witness points on a general

affine line, i.e.:

g(x(µ) = b+ µw) = 0.

Assuming g(x) = 0 properly cuts one degree of freedom from

f−1(0), we want to find witness points on all

(k − 1)-dimensional components of f−1(0) ∩ g−1(0).
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Intrinsic Hypersurface Intersection

The diagonal homotopy for (f, g) on (x,y) ∈ Cn×n starts at



x(1)

y(1)



 =




b

b



+
n−k∑

i=1

λi




vi

0



+ µ




0

w





and ends at



x(0)

y(0)



 =




b

b



+
n−k∑

i=1

λi




vi

vi



+ µ




w

w



 .

The diagonal homotopy



f

g












x(t)

y(t)



 =




x(1)

y(1)



 t+




x(0)

y(0)



 (1− t)



 =




0

0





has n− k + 1 independent variables (λ1, λ2, . . . , λn−k, µ).
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Computing Nonsingular Solutions Incrementally

Suppose (f1, f2, . . . , fk) defines the system f(x) = 0, x ∈ Cn,

whose solution set is pure dimensional of multiplicity one for all

k = 1, 2, . . . , N ≤ n, i.e.: we find only nonsingular roots if we

slice the solution set of f(x) = 0 with a generic linear space of

dimension n− k.

Main loop in the solver :

for k = 2, 3, . . . , N − 1 do

use a diagonal homotopy to intersect

(f1, f2, . . . , fk)
−1(0) with fk+1(x) = 0,

to find witness points on all (n− k − 1)-dimensional

solution components.
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Outcomes of Hypersurface Intersections

Let V be an (n− k)-dimensional irreducible component of

(f1, ..., fk)
−1(0) and g−1(0) be an irreducible hypersurface.

Three cases for V ∩ g−1(0):

1. V ⊆ g−1(0)

All witness points of V satisfy g(x) = 0.

2. dim(V ∩ g−1(0)) = k − 1

The diagonal homotopy gives witness points on all

(k − 1)-dimensional components of the intersection.

3. V ∩ g−1(0) = ∅

All paths in the diagonal homotopy diverge.
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3.2 Test Polynomial Systems

• all adjacent minors of a general matrix

• the cyclic n-roots problem

• a 7-bar mechanism in the plane

• a spatial Burmester problem

• the Griffis-Duffy platform
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Adjacent 2× 2-minors of a 2× (n + 1)-matrix

n = 3 :

(1)
︷ ︸︸ ︷

(3)
︷ ︸︸ ︷




x11 x12 x13 x14

x21 x22 x23 x24





︸ ︷︷ ︸
(2)







x11x22 − x21x12 = 0 (1)

x12x23 − x22x13 = 0 (2)

x13x24 − x23x14 = 0 (3)

Theorem (Diaconis, Eisenbud, Sturmfels 1998):

The ideal of all adjacent 2× 2-minors of a generic 2× (n+ 1)-matrix is

the intersection of f(n) prime ideals. In particular, the ideal is radical.

f(0) = f(1) = 1, f(n) = f(n− 1) + f(n− 2), Fibonacci numbers

P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice Walks and Primary

Decomposition. Vol 161 of Progress in Mathematics, 173–193, 1998.

S. Hosten and J. Shapiro: Primary Decomposition of Lattice Basis

Ideals. Journal of Symbolic Computation 29(4&5): 625–639, 2000.
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Witness Points for Adjacent Minors

A general 2× (n+1)-matrix gives a system of n equations in 2n+2

variables whose (n+ 2)-dimensional solution set has degree 2n.

n m d user cpu time

3 8 8 301ms

4 10 16 962ms

5 12 32 3s 395ms

6 14 64 11s 497ms

7 16 128 31s 425ms

n m d user cpu time

8 18 256 1m 46s 162ms

9 20 512 7m 1s 596ms

10 22 1,024 17m 57s 269ms

11 24 2,048 40m 15s 723ms

12 26 4,096 1h 58m 22s 282ms

n = #equations, m = #variables, d = degree

user cpu time for Pentium III 1Ghz Windows 2000
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A spatial Burmester Problem

Classical in the plane : Given five placements of a moving body, find

the points of the moving body that lie on a common fixed circle.

Spatial body guidance : Seven general positions determine 20

center-point/sphere-point pairs. (Schönflies) O. Bottema and B.

Roth: Theoretical Kinematics. North-Holland, Amsterdam, 1979.

Instead of seven, take only six placements. We solve

||Rix+ pi − y||
2 − ||R0x+ p0 − y||

2 = 0, i = 1, 2, . . . , 5,

where pi are positions of the body and Ri are rotation matrices.

For given positions, determine (x,y), with x the sphere-point

curve and y the center-point curve.
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Witness Points

for the Spatial Burmester Problem

• The input polynomial system consists of five quadrics in six

unknowns (x,y).

• The new incremental solver computes 20 witness points in

7s 181ms on Pentium III 1Ghz Windows 2000 PC.

• Projection onto x or y reduces the degree from 20 to 10.
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Visualization of Samples with Maple

> read sbr100x: read sbr100y:  # samples
> with(plottools):
> a := 1: b := 14:
The curve for x appears in dashed lines, the curve for y is drawn in solid lines :
> x := curve(xl1[a..b],linestyle=4,thickness=3,color=black):
> y := curve(yl1[a..b],thickness=3,color=black):
> T1 := plots[textplot3d]([-.5,-.3,.8,‘curve 
x‘],align=LEFT,color=black):

> T2 := plots[textplot3d]([0,0.3,0.2,‘curve 
y‘],align=RIGHT,color=black):

> l := []:
> for i from a to b do
>   l := [op(l),line(xl1[i],yl1[i],thickness=2)]:
> od:
> plots[display](x,y,T1,T2,l,axes=BOXED);

curve y

curve x

–1.6
–1.2

–0.8
–0.4

0

–0.3
–0.2

–0.1
0

0.1
0.2

0.3
0.4

0.2

0.4

0.6

0.8
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4. Conclusions

• Feasible in practice to decompose the solution set of a

polynomial system by standard machine arithmetic.

multi-precision arithmetic is needed for singular components...

• The incremental solving method with diagonal homotopies

promises to unify solvers for isolated and solvers for

components of solutions.

exploitation of structure in progress...
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