
exporting Ada software to Python and Julia
applying GPRbuild to make shared object files

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/∼jan
janv@uic.edu

Ada devroom, FOSDEM 2022, 6 February, online

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 1 / 14

Outline

1 Introduction
motivation and problem statement
mixed language development with GPRbuild

2 Interface Development
giving control to the application
demonstration package
applying GPRbuild

3 an application: PHCpack
lessons learned
github repositories

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 2 / 14

make Ada software available to Python and Julia

Two goals when exporting Ada software:
1 Make the build process as simple as possible.
2 Give control to as many functionality as possible.

Jupyter = Julia, Python, R, and many others . . .

The Jupyter notebook is popular for interactive computing.
Used in SageMath, an open source mathematical software.
Not tied to any particular programming language.

GPRbuild is the project manager of the gnu-ada compiler GNAT.

GPRbuild enables mixed-language development,
combining Ada, C, and C++ software.

The interfacing in this talk is mainly intended for programmers.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 3 / 14

Julia, Python, R, and many others

The Jupyter notebook comes with many kernels.
Python is a widely used scripting language.
Julia is a new programming for scientific computing.

Both Python and Julia interface well with C code.

Python
@R

Julia
�	

C interface
?

Ada Code

The main point is to automate the build process with GPRbuild.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 4 / 14

mixed language development with GPRbuild

GPRbuild recognizes Ada, C, and C++ as languages.

C is a some kind of least common multiple:

widely available on almost all computers,

most languages interface to C.

Therefore, if your software can be used by a C programmer,
then applications in other languages are also likely to benefit.

Library projects build shared object files, files with
the extension .so (Linux), .dll (Windows), .dylib (Mac OS X).

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 5 / 14

developing an interface
Two types of interfaces:

1 The Ada program main remains in control.
2 The interface package gives control to a C program.

Example: program that swaps the characters in a string.

"hello" - swap - "olleh"

Two types of interfaces:
1 The Ada main reads the string, swaps, and writes.

2 The C program has control:
I passes data to some Ada package
I calls a procedure exported by the Ada package to swap
I extracts the data from the Ada package

A string in this context is an array of ASCII codes (32-bit integers).

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 6 / 14

a demonstration package, and its C interface
Ada package: swap

i Initialize(s)i DoIti s := Retrieve

with C_Integer_Arrays; use C_Integer_Arrays;

function call_swap (jobnbr : integer;
sizedata : integer;
swapdata : C_intarrs.Pointer;
verbose : integer) return integer;

where C_Integer_Arrays defines C_Integer_Array as an array of
Interfaces.C.int, and it contains

package C_intarrs is
new Interfaces.C.Pointers(Interfaces.C.size_T,

Interfaces.C.int,
C_Integer_Array,0);

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 7 / 14

testing the C interface

sizeword = strlen(word);

for(int idx = 0; idx < sizeword; idx++)
dataword[idx] = (int) word[idx];

adainit();
fail = _ada_call_swap(0,sizeword,dataword,1);
fail = _ada_call_swap(1,sizeword,dataword,1);
fail = _ada_call_swap(2,sizeword,dataword,1);
adafinal();

for(int idx = 0; idx < sizeword; idx++)
word[idx] = (char) dataword[idx];

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 8 / 14

applying GPRbuild — the file demo.gpr

project Demo is

for Languages use ("Ada", "C");

for Source_Dirs use ("src");

for Main use
(

"hello_world.adb",
"main.adb",
"test_call_swap.c"

);

for Object_Dir use "obj";

for Exec_Dir use "bin";

end Demo;

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 9 / 14

a library project — essentials of demolib.gpr
for Library_Dir use "lib";
for Library_Name use "demo";
for Library_Kind use "dynamic";
for Library_Auto_Init use "true";
for Library_Interface use
(

"hello_world", "main", "swap", "call_swap", "c_integer_arrays"
);
for Library_Standalone use "encapsulated";

package Compiler is

for Switches ("call_swap.adb") use ("-c");

end Compiler;

package Binder is

-- the "-Lada" is needed for the adainit and adafinal functions
for Default_Switches ("Ada") use ("-n", "-Lada");

end Binder;

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 10 / 14

the Julia ccall() function
The Julia code below calls the call_swap procedure.

LIBRARY = "../Ada/lib/libdemo"

word = [Cint(’h’), Cint(’e’), Cint(’l’), Cint(’l’), Cint(’o’)]
println(word)
ptr2word = pointer(word, 1)
p = ccall((:_ada_call_swap, LIBRARY), Cint,

(Cint, Cint, Ref{Cint}, Cint), 0, 5, ptr2word, 1)
p = ccall((:_ada_call_swap, LIBRARY), Cint,

(Cint, Cint, Ref{Cint}, Cint), 1, 5, ptr2word, 1)
p = ccall((:_ada_call_swap, LIBRARY), Cint,

(Cint, Cint, Ref{Cint}, Cint), 2, 5, ptr2word, 1)
println(word)

The string "hello" is represented by Int32[104, 101, 108, 108, 111].

The last println(word) shows Int32[111, 108, 108, 101, 104].

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 11 / 14

extending Python

To make code available to Python:

1 Define an extension module in C or C++.
2 Define setup.py, adding

extra_objects=[’../Ada/lib/libdemo.a’, \
ADALIB + ’libgnat_pic.a’, \
ADALIB + ’libgnarl_pic.a’]

where ADALIB is the location of the Ada libraries.
3 Run python setup.py build_ext, which compiles

the extension module and makes the shared object.

The shared object can be imported in a Python session.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 12 / 14

an application: PHCpack
PHCpack is software for Polynomial Homotopy Continuation,
to solve systems of polynomial equations.

Mostly written in Ada, developed over almost 30 years.
Contains DEMiCs, written in C++ by Mizutani and Takeda.
phcpy is an interface to Python, for Linux and Mac OS X.
phcpy is motivated by the open source software SageMath.
A Julia interface is under development.

From the Julia folder of the PHCpack source distribution:

$ julia version.jl
-> in use_c2phc4c.Handle_Jobs ...
PHCv2.4.85 released 2021-06-30
$

ccall() uses the libPHCpack shared object, made with GPRbuild.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 13 / 14

free and open source software

Pointers to github repositories (GPL-3.0 License):

github.com/janverschelde/PHCpack

github.com/janverschelde/ExportAdaGPRbuild

The ExportAdaGPRbuild contains the demo code for this talk.

Thanks for your interest in this work.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 14 / 14

	Introduction
	motivation and problem statement
	mixed language development with GPRbuild

	Interface Development
	giving control to the application
	demonstration package
	applying GPRbuild

	an application: PHCpack
	lessons learned
	github repositories

