exporting Ada software to Python and Julia
applying GPRbuild to make shared object files

Jan Verschelde

University of lllinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
janv@uic.edu

Ada devroom, FOSDEM 2022, 6 February, online

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 1/14

Outline

ﬂ Introduction
@ motivation and problem statement
@ mixed language development with GPRbuild

e Interface Development
@ giving control to the application
@ demonstration package
@ applying GPRbuild

e an application: PHCpack
@ lessons learned
@ github repositories

Jan Verschelde (UIC) exporting Ada software

FOSDEM 2022, 6 February

2/14

make Ada software available to Python and Julia

Two goals when exporting Ada software:
@ Make the build process as simple as possible.
@ Give control to as many functionality as possible.

Jupyter = Julia, Python, R, and many others . ..
@ The Jupyter notebook is popular for interactive computing.
@ Used in SageMath, an open source mathematical software.
@ Not tied to any particular programming language.

GPRbuild is the project manager of the gnu-ada compiler GNAT.

GPRbuild enables mixed-language development,
combining Ada, C, and C++ software.

The interfacing in this talk is mainly intended for programmers.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

3/14

Julia, Python, R, and many others

The Jupyter notebook comes with many kernels.
@ Python is a widely used scripting language.
@ Julia is a new programming for scientific computing.

Both Python and Julia interface well with C code.

Python Julia

C interface
!
Ada Code

The main point is to automate the build process with GPRbuild.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

4/14

mixed language development with GPRbuild

GPRbuild recognizes Ada, C, and C++ as languages.

C is a some kind of least common multiple:

@ widely available on almost all computers,

@ most languages interface to C.

Therefore, if your software can be used by a C programmer,
then applications in other languages are also likely to benefit.

Library projects build shared object files, files with

the extension . so (Linux), .d11 (Windows), .dylib (Mac OS X).

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

5/14

developing an interface

Two types of interfaces:
@ The Ada program main remains in control.
© The interface package gives control to a C program.

Example: program that swaps the characters in a string.

"hello" —

swap —— "olleh"

Two types of interfaces:
@ The Ada main reads the string, swaps, and writes.
©@ The C program has control:

» passes data to some Ada package

» calls a procedure exported by the Ada package to swap
» extracts the data from the Ada package

A string in this context is an array of ASCII codes (32-bit integers).

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 6/14

a demonstration package, and its C interface

Ada package: swap

Initialize (s)
DoIt

s := Retrieve

with C_Integer_Arrays; use C_Integer_Arrays;

function call_swap (Jjobnbr : integer;
sizedata : integer;
swapdata : C_intarrs.Pointer;
verbose : integer) return integer;

where C_Integer_Arrays defines C_Integer_Array as an array of
Interfaces.C.int, and it contains

package C_intarrs is
new Interfaces.C.Pointers(Interfaces.C.size_T,
Interfaces.C.int,
C_Integer_Array,0);

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

7/14

testing the C interface

sizeword = strlen (word);
for (int idx = 0; idx < sizeword; idx++)
dataword[idx] = (int) word[idx];

adainit ();

fail = _ada_call_swap (0, sizeword,dataword,1l);
fail = _ada_call_swap(l,sizeword,dataword,1);
fail = _ada_call_swap(2,sizeword,dataword,1l);

adafinal () ;

for (int idx = 0; idx < sizeword; idx++)
word[idx] = (char) dataword[idx];

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 8/14

applying GPRbuild — the file demo . gpr

project

for

for

for

(

) i
for

for

Demo is

Languages use ("Ada", "C");
Source_Dirs use ("src");
Main use

"hello_world.adb",
"main.adb",
"test_call_swap.c"
Object_Dir use "obij";

Exec_Dir use "bin";

end Demo;

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

9/14

a library project — essentials of demolib.gpr

for Library_ Dir use "1lib";

for Library_Name use "demo";

for Library_Kind use "dynamic";
for Library_Auto_Init use "true";
for Library_Interface use

(
"hello_world", "main", "swap", "call_swap", "c_integer_arrays"
)i
for Library_Standalone use "encapsulated";
package Compiler is
for Switches ("call_swap.adb") use ("-c");
end Compiler;

package Binder is

—— the "-Lada" is needed for the adainit and adafinal functions
for Default_Switches ("Ada") use ("-n", "-Lada");

end Binder;

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 10/14

the Julia ccall () function

The Julia code below calls the call_swap procedure.

LIBRARY = "../Ada/lib/libdemo"

word = [Cint ("h’"), Cint('e’), Cint('1"), Cint('1l'),

println (word)

ptr2word = pointer (word, 1)

p = ccall((:_ada_call_swap, LIBRARY), Cint,
(Cint, Cint, Ref{Cint}, Cint), 0, 5,

p = ccall((:_ada_call_swap, LIBRARY), Cint,
(Cint, Cint, Ref{Cint}, Cint), 1, 5,
p = ccall((:_ada_call_swap, LIBRARY), Cint,

(Cint, Cint, Ref{Cint}, Cint), 2, 5,
println (word)

ptr2word,

ptr2word,

ptr2word,

Cint ("o’")]

1)

The string "hello" is represented by Int32[104, 101, 108, 108, 111].

The last println (word) shows Int32[111, 108, 108, 101, 104].

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

11/14

extending Python

To make code available to Python:

@ Define an extension module in C or C++.
© Define setup.py, adding

extra_objects=[’../Ada/lib/libdemo.a’, \
ADALIB + ’libgnat_pic.a’, \
ADALIB + ’'libgnarl_pic.a’]

where ADALIB is the location of the Ada libraries.

© Runpython setup.py build_ext, which compiles
the extension module and makes the shared object.

The shared object can be imported in a Python session.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February

12/14

an application: PHCpack

PHCpack is software for Polynomial Homotopy Continuation,
to solve systems of polynomial equations.
@ Mostly written in Ada, developed over almost 30 years.
@ Contains DEMiCs, written in C++ by Mizutani and Takeda.
@ phcpy is an interface to Python, for Linux and Mac OS X.
@ phcpy is motivated by the open source software SageMath.
@ A Julia interface is under development.

From the Julia folder of the PHCpack source distribution:

$ julia version.jl

—> 1in use_c2phcé4c.Handle_Jobs
PHCv2.4.85 released 2021-06-30
$

ccall () uses the 1ibPHCpack shared object, made with GPRbuild.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 13/14

free and open source software

Pointers to github repositories (GPL-3.0 License):

@ github.com/janverschelde/PHCpack

@ github.com/janverschelde/ExportAdaGPRbuild

The ExportAdaGPRbuild contains the demo code for this talk.

Thanks for your interest in this work.

Jan Verschelde (UIC) exporting Ada software FOSDEM 2022, 6 February 14/14

	Introduction
	motivation and problem statement
	mixed language development with GPRbuild

	Interface Development
	giving control to the application
	demonstration package
	applying GPRbuild

	an application: PHCpack
	lessons learned
	github repositories

