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polynomial homotopy continuation methods

f (x) = 0 is a polynomial system we want to solve,
g(x) = 0 is a start system (g is similar to f ) with known solutions.

A homotopy h(x, t) = (1 − t)g(x) + t f (x) = 0, t ∈ [0,1],
to solve f (x) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Numerical continuation methods track the paths x(t), from t = 0 to 1.

Problem statement: when solving large polynomial systems, the
hardware double precision may not be sufficient for accurate solutions.

Our goal: accelerate computations with general purpose
Graphics Processing Units (GPUs) to compensate for the overhead
caused by double double and quad double arithmetic.

Numerical continuation methods apply Newton’s method.
In the HPCC 2014 proceedings we published our GPU implementation
of Newton’s method for polynomial systems.
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quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by
M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/.
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evaluating and differentiating polynomials

The data parallelism (needed for speedup on the GPU) comes from
the reverse mode of algorithmic differentiation
to evaluate polynomials (and their derivatives) in several variables.

The data that defines the instructions:
Polynomials are sums of coefficients multiplied by monomials.
Monomials are decomposed in two parts:

1 the factor of products of powers, common in all derivatives;
2 the product of all variables that occur in the monomial.

Example: evaluation and differentiation of x1x2x3x4x5.

x1 x1 � x2 x1x2 � x3 x1x2x3 � x4 x1x2x3x4 � x5
x5 x5 � x4 x5x4 � x3 x5x4x3 � x2

x1 � x5x4x3 x1x2 � x5x4 x1x2x3 � x5
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some related work in algorithmic differentiation
M. Grabner, T. Pock, T. Gross, and B. Kainz. Automatic differentiation for
GPU-accelerated 2D/3D registration. In Advances in Automatic Differentiation,
pages 259–269. Springer, 2008.
G. Kozikowski and B.J. Kubica. Interval arithmetic and automatic differentiation
on GPU using OpenCL. In PARA 2012, LNCS 7782, pages 489-503, Springer
2013.

some related work in polynomial system solving
R.A. Klopotek and J. Porter-Sobieraj. Solving systems of polynomial equations
on a GPU. In Preprints of the Federated Conference on Computer Science and
Information Systems, September 9-12, 2012, Wroclaw, Poland, pages 567–572,
2012.
M.M. Maza and W. Pan. Solving bivariate polynomial systems on a GPU. ACM
Communications in Computer Algebra, 45(2):127–128, 2011.

some related work in numerical linear algebra
D. Mukunoki and D. Takashashi. Implementation and evaluation of triple precision
BLAS subroutines on GPUs. In Proceedings of PDSEC 2012, pages 1372–1380.
IEEE Computer Society, 2012.
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SIMT Path Tracking (SIMT = Single Instruction Multiple Threads)

We run the same arithmetic circuit at different data:
threads are evaluating and differentiation the same polynomials,
at different approximations for the solutions along the path.

path0 path1 path2
predict predict predict
evaluate evaluate evaluate
correct correct correct
evaluate evaluate
correct correct

evaluate
correct

The three stages in a predictor-corrector algorithm are:
1 predict: apply extrapolation to predict the next approximation,
2 evaluate: evaluate and differentiate the polynomials in the system,
3 correct: solve a linear system in Newton’s method.
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ordering the jobs to track paths

In order for approximations to reach the required accuracy,
some paths need two or three steps in Newton’s method.

The labels to the jobs correspond to the indices of each path:

path0 path1 path2
predict predict predict
evaluate evaluate evaluate
correct correct correct
evaluate evaluate
correct correct

evaluate
correct

job0 job1 job2
predict0 predict1 predict2
evaluate0 evaluate1 evaluate2
correct0 correct1 correct2
evaluate0 evaluate2
correct0 correct2
evaluate2
correct2

Every path has its own current value of the continuation parameter t .

The adaptive step size control is executed on the device.

The length of the total execution time is bounded from below
by the time required for the most difficult path.
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launching kernels for the next round

The status of each evaluation and correction stage is either

−1 for failure, 0 to continue, or +1 for success,

as determined by a check kernel.
The check kernel performs a a parallel scan to count the zeros in the
status report for all paths, for example:

path0 path1 path2 path3 path4 · · ·
status 0 +1 0 −1 0 · · ·

scan for 0 1 1 2 2 3 · · ·
job_idx + 1 1 2 3 · · ·

path_idx 0 2 4 · · ·

The only number passed between the CPU and the GPU in each step
is the total number of paths to continue.
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pseudo code on host and device

Pseudo code on the host:
for each polynomial do

for each monomial do
1. compute the coefficient c(t) for this monomial;
2. evaluate the monomial and its derivative;
3. add the values to the polynomials and to the Jacobian matrix.

Pseudo code on the device:
launch the following three kernels
1. compute the coefficient c(t)

for all monomials in all polynomials;
2. evaluate the monomial and its derivatives

for all monomials in all polynomials;
3. add to the value of the polynomial and to the Jacobian matrix

for all monomials in all polynomials.

Jan Verschelde (UIC) Polynomial Homotopy Continuation on GPUs HPCC 2015 14 / 29



consecutive mode of evaluation and differentiation
For memory coalescing in the summation kernel, the matrix of
evaluated and differentiated monomials is transposed.

For example, the steps in evaluating the same monomial and its
derivatives at different points (a1,a2,a3,a4), (b1,b2,b3,b4), and
(c1, c2, c3, c4) are illustrated below:

x1x2x3x4 and its four derivatives evaluated
path 0 path 1 path 2

0 a1 b1 c1
1 a1 � a2 b1 � b2 c1 � c2
2 a1a2 � a3 b1b2 � b3 c1c2 � c3
7 a1a2a3 � a4 b1b2b3 � b4 c1c2c3 � c4
6 a1a2 � a4 b1b2 � b4 c1c2 � c4
3 a3 � a4 b3 � b4 c3 � c4
4 a1 � a3a4 b1 � b3b4 c1 � c3c4
5 a2 � a3a4 b2 � b3b4 c2 � c3c4
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layout of the memory work space

Instructions to evaluate and differentiate polynomials are
defined by indices (idx) and coefficients (cff).

For each value of the continuation parameter t along a path,
we store its evaluated coefficients c(t), the evaluated monomials
(mon), and the Jacobian matrix (Jac).

instructions work space for multiple path
idx cff evaluate-differentiate correct

cff mon Jac JacT R ∆x

Linear systems are solved with a QR decomposition.
For the corrector, we store the transpose of Jac, the upper triangular
matrix R and the update ∆x to the solution.
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hardware and software

Our NVIDIA Tesla K20C, has 2496 cores with a clock speed of
706 MHz, is hosted by a Red Hat Enterprise Linux workstation of
Microway, with Intel Xeon E5-2670 processors at 2.6 GHz.

We implemented the path tracker with the gcc compiler and version 6.5
of the CUDA Toolkit, compiled with the optimization flag -O2.

The code is free and open source, at github.

The benchmark data were prepared with phcpy,
the Python interface to PHCpack.
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applications: the polynomial systems

Summarizing the characteristics:

name dim #paths #monomials
cyclic10 10 34,940 92
nash8 8 14,833 1,040

pieri44 16 24,024 3,936

Application areas:
cyclic10: study of complex Hadamard matrices,
nash8: totally mixed Nash equilibria in a game,
pieri44: a problems from enumerative geometry.
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memory bandwith

The memory bandwidth of 1,000 evaluations of the same polynomial
system in complex arithmetic (GB/s):

name double double double quad double

Mon
cyclic10 190.41 124.78 25.70
nash8 206.68 143.30 27.62

pieri44 209.47 147.31 27.32

Sum
cyclic10 104.91 126.63 123.13
nash8 121.38 128.52 126.56

pieri44 87.26 80.41 77.56

where
Mon is the kernel to evaluate and differentiate monomials; and
Sum is the kernel to sum the evaluated monomials.
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evaluation of the Jacobian matrix of cyclic10
Times in milliseconds for a number of evaluations
in complex double arithmetic (memory bound):

CPU GPU
#evals total mon sum coeff total speedup

10 0.062 0.017 0.008 0.004 0.028 2.19
20 0.078 0.020 0.008 0.004 0.033 2.39
50 0.188 0.024 0.011 0.005 0.040 4.69

100 0.379 0.030 0.016 0.006 0.051 7.39
150 0.553 0.038 0.021 0.007 0.066 8.41
200 0.732 0.042 0.026 0.008 0.076 9.60
250 0.928 0.049 0.032 0.009 0.090 10.31
300 1.132 0.056 0.037 0.010 0.103 11.04
500 1.824 0.087 0.056 0.015 0.157 11.61
750 2.786 0.126 0.079 0.021 0.226 12.32

1000 3.748 0.155 0.101 0.026 0.282 13.30
1250 4.748 0.203 0.127 0.032 0.363 13.08
1500 5.563 0.235 0.149 0.039 0.423 13.14
2000 7.381 0.299 0.191 0.050 0.540 13.67
3000 11.148 0.459 0.284 0.082 0.826 13.50
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evaluation of the Jacobian matrix of cyclic10
Times in milliseconds for a number of evaluations
in complex double double arithmetic (compute bound):

CPU GPU
#evals total mon sum coeff total speedup

10 0.587 0.066 0.011 0.011 0.088 6.65
20 1.135 0.066 0.012 0.011 0.089 12.79
50 2.808 0.072 0.017 0.012 0.101 27.90

100 5.598 0.092 0.028 0.017 0.137 40.81
150 8.601 0.121 0.036 0.022 0.179 48.03
200 11.225 0.145 0.043 0.025 0.213 52.64
250 13.951 0.154 0.053 0.029 0.236 59.11
300 16.821 0.181 0.060 0.037 0.278 60.56
500 27.912 0.263 0.092 0.052 0.408 68.47
750 41.877 0.379 0.137 0.074 0.590 71.01

1000 55.871 0.472 0.175 0.096 0.743 75.24
1250 69.835 0.587 0.220 0.117 0.924 75.54
1500 83.920 0.691 0.257 0.139 1.087 77.20
2000 112.040 0.917 0.338 0.183 1.438 77.92
3000 167.568 1.383 0.502 0.278 2.163 77.47
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evaluation of the Jacobian matrix of cyclic10
Times in milliseconds for a number of evaluations
in complex quad double arithmetic (compute bound):

CPU GPU
#evals total mon sum coeff total speedup

10 5.572 0.632 0.042 0.072 0.705 7.91
20 11.129 0.622 0.043 0.073 0.738 15.07
50 27.769 0.633 0.054 0.075 0.762 36.44

100 55.566 0.931 0.080 0.130 1.141 48.70
150 83.369 1.213 0.098 0.179 1.491 55.92
200 111.027 1.438 0.120 0.224 1.782 62.29
250 138.872 1.428 0.144 0.235 1.808 76.82
300 166.546 1.641 0.161 0.277 2.079 80.11
500 277.978 2.486 0.257 0.436 3.178 87.46
750 416.268 3.435 0.369 0.594 4.398 94.64

1000 554.742 4.582 0.485 0.786 5.853 94.77
1250 694.084 5.715 0.591 0.943 7.249 95.75
1500 833.445 6.809 0.699 1.183 8.691 95.89
2000 1111.412 8.916 0.929 1.532 11.377 97.69
3000 1676.977 13.244 1.375 2.245 16.864 99.44

Jan Verschelde (UIC) Polynomial Homotopy Continuation on GPUs HPCC 2015 24 / 29



visualization of the speedups
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tracking paths for cyclic 10-roots
Times in seconds and speedups for tracking a number of paths
of the cyclic 10-roots system.

complex double complex double double
#paths CPU GPU speedup CPU GPU speedup

10 0.040 0.128 0.31 0.563 0.344 1.63
20 0.075 0.139 0.54 1.082 0.386 2.80
50 0.158 0.147 1.07 2.248 0.404 5.56

100 0.277 0.155 1.79 3.706 0.421 8.81
200 0.482 0.181 2.67 6.480 0.458 14.15
500 1.239 0.250 4.96 16.802 0.729 23.05

1000 2.609 0.432 6.03 35.683 1.315 27.14
2000 5.341 0.768 6.96 83.601 2.397 34.87
5000 13.358 1.711 7.81 210.287 5.246 40.09

10000 26.562 3.334 7.97 414.332 10.063 41.18

Quality Up!
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visualization of the speedups
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Conclusions and Outlook

When the number of solution paths in polynomial homotopies reaches
several ten thousands, acceleration with GPUs achieves

1 double-digit speedup, relative to one CPU core; and
2 quality up: with acceleration we can

� double the number of paths (the dimension of the problem),
� double the precision (from double to double double),

and then with acceleration still compute faster than without GPU.

Future work includes
the automatic determination of the level of precision;
the integration with message passing and multicore parallelism.
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