
Accelerating Path Tracking
for Polynomial Homotopies

Jan Verschelde
joint work with Xiangcheng Yu

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
jan@math.uic.edu

SIAM Conference on Parallel Processing for Scientific Computing
MS68 High Performance Symbolic Computation

Portland, 21 February 2014

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 1 / 24

Outline

1 Solving Polynomial Systems with Homotopies
compensating for the cost of quad double arithmetic

2 Orthogonalization and Delayed Normalization
accelerating the modified Gram-Schmidt method
overcoming the limits on the capacity of shared memory
solving random complex linear systems

3 The Chandrasekhar H-Equation
the discretization of an integral equation
accelerating Newton’s method

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 2 / 24

solving polynomial systems

Problem statement: when solving large polynomial systems, the
hardware double precision may not be sufficient for accurate solutions.

Our goal: accelerate computations with general purpose
Graphics Processing Units (GPUs) to compensate for the overhead
caused by double double and quad double arithmetic.

Our first results (jointly with Genady Yoffe) on pursuing this goal
with multicore computers are in the PASCO 2010 proceedings.

Narrowing our focus:
1 The computationally intensive task when tracking solution paths

defined by polynomial homotopies is Newton’s method.
2 We focus on accelerating the modified Gram-Schmidt method

to solve linear systems in the least squares sense.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 3 / 24

quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by
M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 4 / 24

the modified Gram-Schmidt method

Input: A ∈ C
m×n.

Output: Q ∈ C
m×n, R ∈ C

n×n: QHQ = I,
R is upper triangular, and A = QR.

let ak be column k of A
for k from 1 to n do

rk ,k :=
√

aH
k ak

qk := ak/rk ,k , qk is column k of Q
for j from k + 1 to n do

rk ,j := qH
k aj

aj := aj − rk ,jqk

Solving Ax = b in the least squares sense:

[
A b

]
=

[
Q qn+1

] [R y
0 z

]
.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 5 / 24

some related work

M. Anderson, G. Ballard, J. Demmel, and K. Keutzer.
Communication-avoiding QR decomposition for GPUs.
In Proceedings of the IPDPS 2011, pages 48–58.
IEEE Computer Society, 2011.
T. Bartkewitz and T. Güneysu. Full lattice basis reduction on
graphics cards. In WEWoRC’11 Proceedings, LNCS vol. 7242,
pages 30–44, Springer, 2012.
J. Demmel, Y. Hida, X.S. Li, and E.J. Riedy. Extra-precise iterative
refinement for overdetermined least squares problems.
ACM Trans. Math. Softw., 35(4):28:1–28:32, 2009.
D. Mukunoki and D. Takashashi. Implementation and evaluation of
triple precision BLAS subroutines on GPUs. In Proceedings of
PDSEC 2012, pages 1372–1380. IEEE Computer Society, 2012.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 6 / 24

the capacity of shared memory

Shared memory is fast but limited in capacity.

For the computation of the complex conjugated inner product aH
k ak , we

load the components of an m-dimensional vector into shared memory.

If shared memory can hold K components of a vector,
then let L = �m/K � be the number of rounds it takes to compute

aH
k ak =

L−1∑
i=0

K−1∑
j=0

ak ,i�K+j ak ,i�K+j .

The value for K is typically a multiple of the warp size
and equals the number of threads in a block.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 7 / 24

computing conjugated inner products

For capacity K of shared memory and L = �m/K �:

aH
k ak =

L−1∑
i=0

K−1∑
j=0

ak ,i�K+j ak ,i�K+j .

Executing a double loop:
1 The index j in the inner loop is the index of the thread in a block, so

the inner loop is done simultaneously by all threads in the block.
2 The outside loop on i is a sum reduction and takes log2(L) steps.

The computation of aH
k ak for an n-dimensional vector ak is reduced to

m memory accesses,
L steps to make all partial sums, and
log2(L) steps for the outer sum.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 8 / 24

the reduction

For the reduction, we compute rk ,j := qH
k aj of two m-vectors:

qk


qk ,0
qk ,1

...
qk ,m−1




aj


aj ,0
aj ,1

...
aj ,m−1




qH
k aj


q̄k ,0 � aj ,0
q̄k ,1 � aj ,1

...
q̄k ,K−1 � aj ,m−1




As we can keep K components of each m-vector in shared memory,
thread t in a block computes q̄k ,t � aj ,t .

As we still need qk for aj := aj − rk ,jqk ,
3m shared memory locations are used to perform the reductions.

The computation of qH
k aj is performed in L rounds,

where L = �3m/K �, for the capacity K of shared memory.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 9 / 24

delayed normalization

When reducing vectors with the current column:
each block of threads normalizes the current column,
first block writes the normalized vector to global memory.

The problem with processing long vectors in rounds:
vectors are read from global memory in stages,
last block that reduces the last column is launched last . . .

Solution: delay normalizations to the next iteration.

The first block
writes the norm of the current vector to global memory,
uses that norm in the next iteration on the previous vector.

Cost: one extra kernel launch at the end.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 10 / 24

back substitution by many blocks

Solving Rx = QHb, for capacity K of shared memory:

r�,�x� = y� −
�−1∑
j=0

r�,j xj = y� −
L−1∑
i=0

K−1∑
j=0

r�,i�K+j ,

where L = �m/K �.
In first stage, L blocks can work simultaneously:

pivot block computes last components of solution,
other blocks write reductions of b to global memory.

Second stage launches L − 1 blocks,
third stage launches L − 2 blocks, etc. . . .

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 11 / 24

hardware and software

Our main target: the NVIDIA Tesla K20C, with 2496 cores at
706 MHz, hosted by a RHEL workstation of Microway, with Intel
Xeon E5-2670 at 2.6 GHz. Used 4.4.7 of gcc and 5.5 of nvcc.

Our other computer is an HP Z800 RHEL workstation with 3.47
GHz Intel Xeon X5690, hosting the NVIDIA Tesla C2050 has 448
cores at 1147 Mhz. Used 4.4.7 of gcc and 5.5 of nvcc.

The NVIDIA GPU Test Drive program of Microway gave access to
two 10-core Xeon E5-2680v2 2.8GHz CPUs and one NVIDIA
Tesla Atlas GPU, the K40: 2880 cores at 745MHz. Host runs
CentOs Linux 6, used 4.4.6 of gcc and 5.5 of nvcc.

The C++ code for the Gram-Schmidt method to run on the host is
directly based on the pseudo code without any optimizations.
Our serial C++ code served mainly to verify correctness.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 12 / 24

MGS + LS on one core 2.60GHz

p n real
D 1024 39.872s

2048 5m23.402s
3072 18m19.975s
4096 43m18.139s
5120 83m59.885s

DD 1024 7m 1.064s
2048 56m 2.627s
3072 189m22.950s
4096 452m53.113s

QD 1024 41m 9.521s
2048 329m 4.188s

Cost overhead factor is about 8,
observed in doubling the dimension.

1024 in QD (41 min) ≈ 2048 in DD (56 min) ≈ 4096 in D (43 min)

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 13 / 24

increasing the block size on the K20C
n BS real user sys speedup

1024 32 5.067s 3.138s 1.501s 7.87
1024 64 3.045s 1.747s 1.099s 13.09
1024 96 2.544s 1.434s 0.966s 15.67
1024 128 2.159s 1.116s 0.801s 18.47
1024 160 2.140s 1.083s 0.859s 18.63
1024 192 1.971s 1.039s 0.782s 20.23
1024 224 1.862s 0.874s 0.794s 21.41
1024 256 1.712s 0.807s 0.744s 23.29
2048 64 18.112s 10.892s 6.950s 17.86
2048 96 14.568s 8.866s 5.516s 22.20
2048 128 11.414s 6.841s 4.342s 28.33
2048 160 10.610s 6.335s 4.042s 30.48
2048 192 9.595s 5.717s 3.634s 33.71
2048 224 9.244s 5.530s 3.461s 34.99
2048 256 8.098s 4.768s 3.147s 39.94
3072 96 44.692s 26.928s 17.518s 24.61
3072 128 35.435s 21.003s 14.198s 31.04
3072 160 33.395s 19.848s 13.251s 32.94
3072 192 28.310s 17.109s 11.002s 38.85
3072 224 26.342s 15.780s 10.390s 41.76
3072 256 24.411s 14.616s 9.542s 45.06
4096 128 1m20.761s 47.926s 32.490s 32.17
4096 160 1m14.422s 44.555s 29.596s 34.91
4096 192 1m 6.437s 43.248s 22.877s 39.11
4096 224 1m 1.094s 39.699s 21.001s 42.53
4096 256 55.140s 32.937s 21.898s 47.12
5120 160 2m20.774s 1m20.936s 59.490s 35.80
5120 192 2m 4.366s 1m13.106s 50.782s 40.52
5120 224 1m53.530s 1m 7.168s 45.975s 44.39
5120 256 1m45.579s 1m 3.446s 41.842s 47.74

⇒ Better speedups
for larger block sizes.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 14 / 24

MGS + LS in DD and QD on the K20C

p n BS real user sys speedup
DD 1024 32 11.846s 8.563s 3.050s 35.54

1024 64 6.608s 4.437s 1.967s 63.72
1024 96 5.359s 3.440s 1.665s 78.57
1024 128 4.270s 2.749s 1.320s 98.61
2048 64 44.798s 27.813s 16.720 75.06
2048 96 34.929s 21.765s 12.860s 96.27
2048 128 27.039s 16.838s 9.922s 124.36
3072 96 1m49.947s 1m 6.248s 43.375s 103.35
3072 128 1m26.581s 51.433s 34.724s 131.24
4096 128 3m21.074s 1m57.756s 1m22.789s 135.14

QD 1024 32 4m12.664s 3m22.920s 49.078s 9.77
1024 64 2m30.463s 1m53.848s 36.221s 16.41
2048 64 19m20.893s 11m48.509s 7m30.749s 17.01

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 15 / 24

comparing wall clock times at logarithmic scale

Observe that the rightmost bar is shorter than fifth bar from the left:
solving a linear system for n = 4,096 with the GPU (DD) takes less
time than solving a linear system for n = 2,048 on the CPU (D).

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 16 / 24

comparing with the new NVIDIA K40
The speedup is computed from the system times.

p n real user sys speedup
D 1024 1.303s 0.697s 0.496s 1.5

2048 6.673s 4.136s 2.428s 1.23
3072 20.342s 12.577s 7.628s 1.25
4096 46.284s 28.287s 17.823s 1.23
5120 1m29.107s 54.447s 34.407s 1.22

DD 1024 3.264s 2.206s 0.950s 1.39
2048 21.214s 13.458s 7.650s 1.30
3072 1m 8.450s 41.942s 26.285s 1.32
4096 2m39.031s 1m37.148s 1m 1.397s 1.35

QD 1024 2m 0.069s 1m32.061s 27.672s 1.31
2048 15m24.871s 9m44.882s 5m37.872s 1.33

Speedups confirm the theoretical peak performance of the K40.

For n = 4,096 (DD), the time of 452m53.113s (more than 7.5 hours)
on one core is reduced to 2m39.031s, a speedup of 170.87.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 17 / 24

the discretization of an integral equation

Formulating a polynomial system for any dimension:

fi(H1,H2, . . . ,Hn) = 2nHi−cHi


n−1∑

j=0

i
i + j

Hj


−2n = 0, i = 1,2, . . . ,n,

where c is some real nonzero constant, 0 < c ≤ 1.

The cost to evaluate and differentiate grows linear in n . . .

⇒ the cost of Newton’s method is dominated
by the cost of solving a linear system which grows as n3.

The value for the parameter c we used in our experiments is 33/64.

Starting at Hi = 1 for all i leads to a quadratically convergent process.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 18 / 24

a benchmark problem

The problem was treated with Newton’s method in [1]
and added to a collection of benchmark problems in [2].
In [3], the system was studied with methods in computer algebra.

1. C.T. Kelley. Solution of the Chandrasekhar h-equation by
Newton’s method. J. Math. Phys., 21(7):1625–1628, 1980.

2. J.J. Moré. A collection of nonlinear model problems. In
Computational Solution of Nonlinear Systems of Equations,
volume 26 of Lectures in Applied Mathematics, pages 723–762.
AMS, 1990.

3. L. Gonzalez-Vega. Some examples of problem solving by using
the symbolic viewpoint when dealing with polynomial systems of
equations. In J. Fleischer, J. Grabmeier, F.W. Hehl, and
W. Küchlin, editors, Computer Algebra in Science and
Engineering, pages 102–116. World Scientific, 1995.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 19 / 24

experimental setup

for a number of iterations :
1. The host evaluates and differentiates the system at the

current approximation, stored in an n-by-(n + 1) matrix [A b],
with b = −f (H1,H2, . . . ,Hn); print b1.

2. A∆x = b is solved in the least squares sense,
either entirely by the host; or
if accelerated, then

2.1 the matrix [A b] is transferred
from the host to the device;

2.2 the device does a QR decomposition on [A b]
and back substitution on the system R∆x = y;

2.3 the matrices Q, R, and the solution ∆x
are transferred from the device to the host.

3. The host performs the update x = x +∆x
to compute the new approximation.
The first component of ∆x and x are printed.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 20 / 24

accelerating only the linear system solving

For n = 1,024, when only the linear system solving was accelerated:

precision wall clock time speedup
double double 41.193s 62.18

quad double 15m34.527s 16.30

The speedups match closely the speedups of 63.72 and 16.41
for solving one linear system.

Performing the entire Newton’s method on the device did not
give better speedups for quad double complex arithmetic.

Accelerating of evaluation, differentiation, and linear system solving
improved speedups for complex double double arithmetic:

from 62.18 to 72.72, for block size 64; and
to 127.42, for block size 128.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 21 / 24

running six iterations with Newton’s method
On one core of the host (CPU), and with GPU acceleration (GPU):

complex double double arithmetic

n real user sys speedup
CPU 1024 42m41.480s 42m37.692s 0.038s
GPU 1024 20.102s 11.664s 8.236s 127.42
CPU 2048 341m47.998s 341m18.009s 0.362s
GPU 2048 2m29.770s 1m26.373s 1m03.014s 136.92

complex quad double arithmetic

n real user sys speedup
CPU 1024 253m51.126s 253m24.170s 4.802s
GPU 1024 15m11.362s 9m28.399s 5m41.532s 16.71
CPU 2048 2027m40.726s 2024m38.715s 3.055s
GPU 2048 110m51.042s 63m21.470s 47m21.105s 18.29

The acceleration of Newton’s method is done entirely by the GPU.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 22 / 24

observe what happens when the dimension doubles ...

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 23 / 24

conclusions

Solving linear systems in the least squares sense after the
modified Gram-Schmidt method on problems of dimensions
2,048, 3,072, and 4,096 in complex double double arithmetic gives
speedups of 124, 131, and 135 when accelerated by the K20C.
Even better speedups with the newest K40.

The good speedups on linear system solving compensate for the
memory transfers between host and device.
The evaluation and differentation stage of Newton’s method can
thus be done on the host with speedups resulting from
accelerated linear system solving.
For applications where the cost of evaluation and differentiation
grows only linearly in the dimension, the orders of the speedups of
several iterations of Newton’s method match those of the linear
systems solving.

Jan Verschelde (UIC) Accelerating Path Tracking SIAM PP 2014 24 / 24

