Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic

> Jan Verschelde joint work with Xiangcheng Yu

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan emails: janv@uic.edu and xiangchengyu@outlook.com

the 7th International Workshop on Parallel Symbolic Computation the University of Bath, Bath, UK, 10-11 July 2015

< ロ > < 同 > < 回 > < 回 > < 回 >

Outline

Polynomial Homotopy Continuation

- compensating for the cost of extra precision
- the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

3 Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

polynomial homotopy continuation methods

 $f(\mathbf{x}) = \mathbf{0}$ is a polynomial system we want to solve, $g(\mathbf{x}) = \mathbf{0}$ is a start system (*g* is similar to *f*) with known solutions.

A homotopy $h(\mathbf{x}, t) = (1 - t)g(\mathbf{x}) + tf(\mathbf{x}) = \mathbf{0}, t \in [0, 1],$ to solve $f(\mathbf{x}) = \mathbf{0}$ defines solution paths $\mathbf{x}(t)$: $h(\mathbf{x}(t), t) \equiv \mathbf{0}$.

Numerical continuation methods track the paths $\mathbf{x}(t)$, from t = 0 to 1.

Problem statement: when solving large polynomial systems, the hardware double precision may not be sufficient for accurate solutions.

Our goal: ccelerate computations with general purpose Graphics Processing Units (GPUs) to compensate for the overhead caused by double double and quad double arithmetic.

Our first results (jointly with Genady Yoffe) on this goal with multicore computers are in the PASCO 2010 proceedings.

・ロン ・四 と ・ ヨン ・ ヨ

quad double precision

A quad double is an unevaluated sum of 4 doubles, improves working precision from 2.2×10^{-16} to 2.4×10^{-63} .

 Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double precision floating point arithmetic. In the 15th IEEE Symposium on Computer Arithmetic, pages 155–162. IEEE, 2001. Software at http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.9.tar.gz.

Predictable overhead: working with double double is of the same cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

 M. Lu, B. He, and Q. Luo: Supporting extended precision on graphics processors. In the Proceedings of the Sixth International Workshop on Data Management on New Hardware (DaMoN 2010), pages 19–26, 2010.

Software at http://code.google.com/p/gpuprec/.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

3 Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

one coordinate of a solution path

Why is this difficult?

Tracking of one *single* path with the predictor-corrector method is a *strictly sequential* process.

Although we compute many points on a solution path, we cannot compute those points in parallel, independently from each other.

In order to move to the next point on the path, the correction for the previous point must be completed.

This difficulty requires

- a fine granularity in the parallel algorithm; and
- a sufficiently high enough threshold on the dimension.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

monomial evaluation and differentiation

accelerated predictor-corrector methods

3 Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

polynomial evaluation and differentiation

We distinguish three stages:

Common factors and tables of power products:

$$x_1^{d_1}x_2^{d_2}\cdots x_n^{d_n} = x_{i_1}x_{i_2}\cdots x_{i_k} imes x_{j_1}^{e_{j_1}}x_{j_2}^{e_{j_2}}\cdots x_{j_\ell}^{e_{j_\ell}}$$

The factor $x_{j_1}^{e_{j_1}} x_{j_2}^{e_{j_2}} \cdots x_{j_{\ell}}^{e_{j_{\ell}}}$ is common to all partial derivatives. The factors are evaluated as products of pure powers of the variables, computed in shared memory by each block of threads.

- Evaluation and differentiation of products of variables: Computing the gradient of $x_1 x_2 \cdots x_n$ with the reverse mode of algorithmic differentiation requires 3n - 5 multiplications.
- Coefficient multiplication and term summation. Summation jobs are ordered by the number of terms so each warp has the same amount of terms to sum.

イロト 不得 トイヨト イヨト 二日

monomial evaluation and differentiation

Evaluating four monomials $x_0x_1x_2$, $x_3x_4x_5$, $x_2x_3x_4x_5$, $x_0x_1x_3x_4x_5$. The tidx in the tables below stands for thread index.

	tidx		$ \begin{array}{c c} 0 & 1 \\ x_0 x_1 x_2 & x_3 x_4 \end{array} $		1	2		3		
	m _{tidx}				$x_3 x_4 x_5$	$x_2 x_3 x_4 x_5$ x		$x_0 x_1 x_3 x_4 x_5$		
	$\frac{\partial m_{tid.}}{\partial x_j}$	x	x_0 $x_0 \star x_1$ rward cal		$x_3 \\ x_3 \star x_4$	$\begin{array}{c} X_2 \\ X_2 \star X_3 \\ Y_2 Y_2 \star Y_4 \end{array}$	$\begin{array}{c} x_1 \\ x_1 \star x_2 \\ x_1 \star x_2 \end{array}$			
	the fo	orv			culation	, from the	top	$x_1 x_2 \times x_3$ $x_1 x_2 x_3 \times x_4$ to bottom row		
	tidx		0		1	2		3		
	m _{tidx}	X	$x_0 x_1 x_2$		<i>x</i> ₃ <i>x</i> ₄ <i>x</i> ₅	$X_2 X_3 X_4 X_5$	K 5	$x_0 x_1 x_3 x_4 x_5$		
		х	1 * <i>X</i> 2	X	$x_3 \star x_4 x_5$	$X_3 \star X_4$	K 5	$X_2 \star X_3 X_4 X_5$		
ŕ	milar	$x_0 \star x_2$		$\star x_2 x_3$		$X_2 \star (X_4 \star X_5)$		$X_1 \star (X_3 \star X_4 X_5$		
-	av.		<i>x</i> ₀ <i>x</i> ₁		<i>x</i> ₃ <i>x</i> ₄	$X_2X_3 \star X_3$	K 5	$x_1x_2\star(x_4\star x_5$		
	υλj					<i>x</i> ₂ <i>x</i> ₃ <i>x</i> ₄	1	$x_1x_2x_3\star(x_5)$		
								$X_1 X_2 X_3 X_4$		
r	a chur	or/	hand	or	acc pro	ducte fror	n ha	ttom to top row		

backward and cross products, from bottom to top row

< ロ > < 同 > < 回 > < 回 > < 回 >

arithmetic circuits in tree mode

First to evaluate the product:

and (storing x_1x_2 and x_3x_4) then to compute the gradient:

computing the gradient of $x_1 x_2 \cdots x_8$

Denote by $x_{i:i}$ the product $x_i \star \cdots \star x_k \star \cdots \star x_i$ for all k between i and j.

The computation of the gradient of $x_1 x_2 \cdots x_n$ requires

- 2n 4 multiplications, and
- n − 1 extra memory locations.

★ ∃ > < ∃ >

collaborating threads

collaborating threads - continued

3

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

3 Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

accelerated predictor-corrector methods

A path tracker has three ingredients:

- The predictor applies an extrapolation method for the next point. Each coordinate is predicted independently, linear cost in n.
- 2 The corrector applies a couple of steps with Newton's method. Denote by J_{f} the matrix of all partial derivatives of f,

$$J_{\mathbf{f}}(\mathbf{x})\Delta\mathbf{x} = -\mathbf{f}(\mathbf{x}), \quad \mathbf{x} := \mathbf{x} + \Delta\mathbf{x}.$$

The adaptive step length control sets the value for the step size.

When tracking one path, the step length control can be done on the host, as only some doubles are needed in the transfer.

- The device computes ||\Delta x|| and ||f(x)||; and then sends ||\Delta x|| and ||f(x)|| to the host.
- The host computes a new value for the step size Δt; and sends Δt to device.

accelerated tracking of one single path

```
Input: Inst, Polynomial Instructions
       W. GPU Workspace
      P. parameters for path tracker
Output: success or fail
        W.x. solution for t = 1 if success
t = 0
\Delta t = P.max\Delta t
\#successes = 0
\#steps = 0
while t < 1 do
   if (#steps > P.max#steps) then return fail
   t = \min(1, t + \Delta t)
   copy t from host to GPU
   launch kernel predict(W.x array, W.t array)
   newton success = GPU Newton(Inst, W, P)
```

・ 何 ト ・ ヨ ト ・ ヨ ト …

adaptive step control

```
if (newton_success) then

update pointer of W.x in W.x_array

#successes = #successes + 1

if (#successes > 2) then

\Delta t = \min(2\Delta t, P.max\Delta t)

else

#successes = 0

\Delta t = \Delta t/2

#steps = #steps + 1

return success
```

A B b A B b

accelerated Newton's method

Input: *Inst*, Polynomial Instructions *W*, GPU Workspace *P*, parameters for Newton's method Output: *success* or *fail* updated *W*.**x**

```
last_max_eq_val = P.max_eq_val
for k from 1 to P.max_iteration do
    GPU_Eval(Inst,W)
    launch kernel Max_Array(W.eq_val, max_eq_val)
        with single block
    copy max_eq_val from GPU to host
    if (max_eq_val > last_max_eq_val) then return fail
    if (max_eq_val < P.tolerance) then return success</pre>
```

く 目 ト く ヨ ト く ヨ ト

accelerated Newton's method continued

```
GPU_Modified_Gram_Schmidt(W)
launch kernel Max_Array(W.∆x, max_∆x)
with single block
copy max_∆x from GPU to host
launch kernel Update_x(W.x,W.∆x)
if (max_∆x < P.tolerance) then return success
last_max_eq_val = max_eq_val
return fail</pre>
```

A right-looking algorithm to implement the modified Gram-Schmidt method provides the most thread parallelism.

・ 伺 ト ・ ヨ ト ・ ヨ ト … ヨ

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

hardware and software

Our NVIDIA Tesla K20C, has 2496 cores with a clock speed of 706 MHz, is hosted by a Red Hat Enterprise Linux workstation of Microway, with Intel Xeon E5-2670 processors at 2.6 GHz.

We implemented the path tracker with the gcc compiler and version 6.5 of the CUDA Toolkit, compiled with the optimization flag -02.

The code is free and open source, at github. The benchmark data were prepared with phcpy, the Python interface to PHCpack. The scripts backelin.py and pierisystems.py are in the examples folder of the phcpy distribution.

イロト 不得 トイヨト イヨト 二日

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

Applications and Computational Results

hardware and software

matrix completion with Pieri homotopies

monodromy loops on cyclic n-roots

matrix completion with Pieri homotopies

The polynomial equations arise from minor expansions on

$$\det(A|X) = 0, \quad A \in \mathbb{C}^{n \times m},$$

and where X is an *n*-by-*p* matrix (m + p = n) of unknowns.

For example, a 2-plane in complex 4-space (or equivalently, a line in projective 3-space) is represented as

$$X = \begin{bmatrix} 1 & 0 \\ x_{2,1} & 1 \\ x_{2,2} & x_{3,2} \\ 0 & x_{4,2} \end{bmatrix}$$

To determine for the four unknowns in X we need four equations, which via expansion results in four quadratic equations.

Jan Verschelde (UIC)	GPU Accelerated Path Tracking	PASCO 2015	25 / 38

Pieri homotopies

Sequences of homotopies build up the solution:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & x_{3,2} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & x_{3,2} \\ 0 & x_{4,2} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ x_{2,1} & 1 \\ 0 & x_{3,2} \\ 0 & x_{4,2} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ x_{2,1} & 1 \\ x_{3,1} & x_{3,2} \\ 0 & x_{4,2} \end{bmatrix}$$

Pieri homotopies are defined as, for *k* from 1 to $m \times p$:

$$\mathbf{h}(\mathbf{x},t) = \begin{cases} \det(A^{(i)}|X) = 0, \ i = 1, 2, \dots, k-1, \\ t \det(A^{(k)}|X) + (1-t) \det(S_X|X) = 0. \end{cases}$$

Tracking one single path, we start a a linear system and gradually, the polynomials increase in degree and the cost of evaluation and differentiation dominates.

Pieri homotopies with double double arithmetic

- n : dimension
- *m* : number of predictor-corrector stages

Tracking one path of a 3-plane in 35-space,

with complex double double arithmetic, times are in seconds:

п	т	cpu	gpu	S	п	т	cpu	gpu	S
32	25	0.05	0.05	1.1	68	239	50.0	3.2	15.8
36	36	0.40	0.21	1.9	72	89	41.8	1.8	23.2
40	19	0.39	0.15	2.6	76	246	136.0	4.6	29.8
44	23	0.61	0.19	3.2	80	226	158.0	5.5	28.7
48	53	1.69	0.45	3.8	84	69	59.2	2.0	29.6
52	79	2.97	0.71	4.2	88	36	37.3	1.2	30.2
56	28	1.37	0.29	4.7	92	90	98.0	3.2	30.3
60	111	5.70	1.13	5.1	96	64	67.2	2.2	30.8
64	63	3.36	0.62	5.4					

tracking a 4-plane in 36-space with double doubles

- n : dimension
- *m* : number of predictor-corrector stages

Tracking one path of a 4-plane in 36-space,

with complex double double arithmetic, times are in seconds:

п	т	cpu	gpu	S	п	т	cpu	gpu	S
32	16	0.03	0.03	1.1	68	51	11.3	0.7	15.6
36	18	0.20	0.11	1.9	72	39	19.4	0.8	23.4
40	12	0.25	0.09	2.6	76	63	38.8	1.5	26.4
44	10	0.28	0.08	3.2	80	157	115.0	4.0	28.8
48	16	0.54	0.14	3.8	84	19	17.3	0.6	30.0
52	40	1.52	0.36	4.3	88	574	431.2	13.3	32.4
56	36	1.71	0.36	4.7	92	250	219.8	6.1	36.2
60	16	0.95	0.19	5.0	96	190	230.8	6.2	37.1
64	75	4.54	0.84	5.4	100	242	1367.2	23.0	59.4
65	83	7.93	0.96	8.3	101	809	4655.7	70.7	65.9
66	195	27.20	2.56	10.6	102	1016	5231.7	75.6	69.2
67	154	26.43	2.07	12.8	103	375	2923.2	44.0	66.5

the speedups on the Pieri homotopies

Jan Verschelde (UIC)

PASCO 2015 29 / 38

GPU Accelerated Path Tracking

Polynomial Homotopy Continuation

compensating for the cost of extra precision

the problems with path tracking

Accelerated Path Tracking

- monomial evaluation and differentiation
- accelerated predictor-corrector methods

Applications and Computational Results

- hardware and software
- matrix completion with Pieri homotopies
- monodromy loops on cyclic n-roots

loops of solution paths

Consider a sequence of homotopies:

$$\mathbf{h}_{\alpha}(\mathbf{x}, t) = \begin{cases} \mathbf{f}(\mathbf{x}) = \mathbf{0} \\ \alpha(1 - t)\mathbf{L}(\mathbf{x}) + t\mathbf{K}(\mathbf{x}) = \mathbf{0} \end{cases}$$
(1)

$$\mathbf{h}_{\beta}(\mathbf{x}, t) = \begin{cases} \mathbf{f}(\mathbf{x}) = \mathbf{0} \\ \beta(1 - t)\mathbf{K}(\mathbf{x}) + t\mathbf{L}(\mathbf{x}) = \mathbf{0} \end{cases}$$
(2)

where

- K(x) = 0 is as L(x) = 0 another set of linear equations with different random coefficients; and
- α and β are different random complex constants.

One loop consists in tracking one path defined by $\mathbf{h}_{\alpha}(\mathbf{x}, t) = \mathbf{0}$ and $\mathbf{h}_{\beta}(\mathbf{x}, t) = \mathbf{0}$. In both cases *t* goes from 0 to 1.

イロト イポト イモト イモト

visualization of monodromy on a quadratic set

PASCO 2015 32 / 38

the cyclic *n*-roots problem

Denoted the system by $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, $\mathbf{f} = (f_1, f_2, \dots, f_n)$, with

$$f_{1} = x_{0} + x_{1} + \dots + x_{n-1},$$

$$f_{2} = x_{0}x_{1} + x_{1}x_{2} + \dots + x_{n-2}x_{n-1} + x_{n-1}x_{0},$$

$$f_{i} = \sum_{j=0}^{n-1} \prod_{k=j}^{j+i-1} x_{k \mod n}, i = 3, 4, \dots, n-1,$$

$$f_{n} = x_{0}x_{1}x_{2} \cdots x_{n-1} - 1.$$

Observe the increase of the degrees: $deg(f_k) = k$.

High degrees are a likely cause of large roundoff errors.

a tropical version of Backelin's Lemma, CASC 2013

Lemma (Tropical Version of Backelin's Lemma (Adrovic-V.))

For $n = m^2 \ell$, where $\ell \in \mathbb{N} \setminus \{0\}$ and ℓ is no multiple of k^2 , for $k \ge 2$, there is an (m - 1)-dimensional set of cyclic n-roots, represented exactly as

$$\begin{array}{rcl} x_{km+0} &=& u^{k} t_{0} \\ x_{km+1} &=& u^{k} t_{0} t_{1} \\ x_{km+2} &=& u^{k} t_{0} t_{1} t_{2} \\ &\vdots \\ x_{km+m-2} &=& u^{k} t_{0} t_{1} t_{2} \cdots t_{m-2} \\ x_{km+m-1} &=& \gamma u^{k} t_{0}^{-m+1} t_{1}^{-m+2} \cdots t_{m-3}^{-2} t_{m-2}^{-1} \end{array}$$

for k = 0, 1, 2, ..., m - 1, free parameters $t_0, t_1, ..., t_{m-2}$, constants $u = e^{\frac{i2\pi}{m\ell}}$, $\gamma = e^{\frac{i\pi\beta}{m\ell}}$, with $\beta = (\alpha \mod 2)$, and $\alpha = m(m\ell - 1)$.

positive dimensional cyclic n-roots

Backelin's Lemma states that there are cyclic *n*-roots of dimension m - 1 for $n = \ell m^2$, where ℓ is no multiple of k^2 , for $k \ge 2$.

To compute the degree of the sets, we add to **f** as many linear equations **L** (with random complex coefficients) as the dimension of the set and count the number of solutions of the system f(x) = 0:

$$\begin{cases} f(\mathbf{x}) = \mathbf{0} \\ \mathbf{L}(\mathbf{x}) = \mathbf{0}. \end{cases}$$

The degree d = m for $n = m^2$ and this result extends for $n = \ell m^2$.

n	16	32	48	64	80	96	128	144	160	176
d	4	4	4	8	4	4	8	12	4	4
п	192	208	240	256	272	288	304	320	336	352
d	8	4	4	16	4	12	4	8	4	4

times in seconds on tracking one cyclic n-roots path

	complex double					complex double double					complex quad double				
п	s	т	cpu	gpu	S	s	т	cpu	gpu	S	s	т	cpu	gpu	S
16	1	32	0.00	0.03	0.14	1	20	0.04	0.06	0.65	1	32	0.48	0.52	0.92
32	1	100	0.06	0.16	0.35	1	79	1.03	0.41	2.53	1	100	12.66	3.62	3.50
48	1	103	0.17	0.24	0.72	1	78	3.23	0.61	5.29	1	103	39.46	5.39	7.32
64	0	987	4.48	4.15	1.08	1	225	22.94	2.57	8.92	1	987	229.99	17.93	12.83
80	1	99	0.73	0.42	1.74	1	75	14.96	1.15	13.01	1	99	180.37	10.13	17.81
96	1	95	1.23	0.52	2.36	1	69	23.17	1.34	17.26	1	95	289.38	12.64	22.90
112	1	171	3.42	1.17	2.92	1	121	68.07	2.98	22.86	1	171	813.91	28.36	28.70
128	1	162	5.66	1.47	3.85	1	123	102.94	3.88	26.54	1	162	1253.82	37.75	33.21
144	0	214	12.58	2.67	4.72	0	1500	1487.86	61.59	24.16	1	214	15898.67	479.18	33.18
160	1	68	4.84	0.87	5.53	1	49	83.11	2.84	29.31	1	68	998.43	23.96	41.67
176	1	160	15.65	2.52	6.21	1	118	259.80	8.06	32.24	1	160	3179.81	70.58	45.05
192	0	246	30.92	9.27	3.34	1	150	419.16	13.03	32.16	1	246	5054.70	105.69	47.83
208	1	231	39.51	5.22	7.57	1	168	628.46	16.33	38.48	1	231	7529.02	147.09	51.19
224	1	96	19.39	2.46	7.88	1	71	319.27	7.88	40.54	1	96	3925.33	73.76	53.22
240	1	140	34.04	4.04	8.42	1	96	531.01	12.49	42.50	1	140	6714.01	119.86	56.01
256	0	0	0.00	1.00	0.00	0	0	0.00	1.00	0.00	0	0	0.00	1.00	0.00
272	1	160	58.19	7.19	8.09	1	118	914.24	19.12	47.82	1	160	10829.36	183.12	59.14
288	0	0	0.00	1.00	0.00	0	0	0.00	1.00	0.00	0	0	0.00	1.00	0.00
304	1	142	81.04	8.05	10.07	1	103	1176.29	22.87	51.44	1	142	13992.60	226.78	61.70
320	0	0	0.00	1.00	0.00	0	0	0.00	1.00	0.00	0	0	0.00	1.00	0.00
336	1	157	105.30	11.12	9.47	1	114	1772.97	33.26	53.31	1	157	20807.27	327.25	63.58
352	1	121	93.89	9.78	9.60	1	90	1621.15	28.75	56.39	1	121	18881.13	290.36	65.03

GPU Accelerated Path Tracking

イロト イポト イヨト イヨ

speedups on one path of cyclic *n*-roots

In double precision, the dimensions are too small for good speedups. Double digits speedups in double double and quad double precision are achieved once n = 64.

conclusions

We can compensate for the cost of double double arithmetic when tracking one solution path with GPU acceleration.

Double double and quad double arithmetic (using QD):

- memory bound for double and (real) double double arithmetic,
- *compute bound* for complex double doubles and quad doubles.

Double digit speedups \Rightarrow double the precision, compute twice as fast.

We achieve not only speedup, but also *quality up*, and in some hard cases double precision is insufficient for a successful path tracking.

For *many* solution paths:

Tracking many solution paths of a polynomial homotopy on a graphics processing unit with double double and quad double arithmetic. (with X. Yu). *Proceedings of HPCC 2015.* arXiv:1505.00383

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ