The Numerical Solution of Polynomial Systems Arising in Engineering and Science

> Jan Verschelde e-mail: jan@math.uic.edu web: www.math.uic.edu/~jan

Graduate Student Seminar 5 September 2003

Acknowledgements

in collaboration with

Andrew Sommese (University of Notre Dame) and Charles Wampler (General Motors Research Labs)

with the assistance of Yusong Wang and Ailing Zhao

supported by NSF award #0134611 early career and NSF award #0105739 collaborative research

Why bother?

practical and theoretical motivations:

- polynomial systems arise in practical problems

 → geometric constraint solving, real algebraic geometry,
 computation of Nash equilibria, signal processing, mechanical
 design, vision, global optimization, and computational physics
- 2. polynomial systems are studied in pure mathematics \rightarrow algebraic geometry offers us tools

Solving polynomial systems involves

- engineering, in particular: mechanical design
- <u>algebraic geometry</u>: we are interested in constructive results about solutions of polynomial systems
- <u>computational mathematics</u>: numerical analysis, symbolic computation, discrete & computational geometry
- <u>computer science</u>: development of mathematical software and parallel computation to solve large problems

Assembly of Stewart-Gough Platforms

end plate, the platform

is connected by legs to

a stationary base

Forward Displacement Problem:

Given: position of base and leg lengths. Wanted: position of end plate.

The Equations for the Platform Problem

workspace $\mathbb{R}^3 \times SO(3)$: position and orientation

$$\mathrm{SO}(3) = \{ A \in \mathbb{C}^{3 \times 3} \mid A^H A = I, \ \det(A) = 1 \}$$

more efficient to use Study (or soma) coordinates:

 $[e:g] = [e_0:e_1:e_2:e_3:g_0:g_1:g_2:g_3] \in \mathbb{P}^7$ quaternions on the Study quadric: $f_0(e,g) = e_0g_0 + e_1g_2 + e_2g_2 + e_3g_3 = 0$, excluding those e for which ee' = 0, $e' = (e_0, -e_1, -e_2, -e_3)$

given leg lengths L_i , find [e:g] leads to

$$f_i(e,g) = gg' + (bb'_i + a_i a'_i - L_i^2)ee' + (gb'_i e' + eb_i g') - (ge'a'_i + a_i eg') - (eb_i e'a'_i + a_i eb'_i e') = 0, \quad i = 1, 2, \dots 6$$

⇒ solve $f = (f_0, f_1, \dots, f_6)$, 7 quadrics in $[e : g] \in \mathbb{P}^7$ expecting $2^7 = 128$ solutions...

Literature on Stewart-Gough platforms

- M. Raghavan: The Stewart platform of general geometry has 40 configurations. ASME J. Mech. Design 115:277–282, 1993.
- B. Mourrain: The 40 generic positions of a parallel robot. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ed. by M. Bronstein, pages 173–182, ACM 1993.
- F. Ronga and T. Vust: Stewart platforms without computer? In Real Analytic and Algebraic Geometry, Proceedings of the International Conference, (Trento, 1992), pages 196–212, Walter de Gruyter 1995.
- M.L. Husty: An algorithm for solving the direct kinematics of general Stewart-Gough Platforms. Mech. Mach. Theory, 31(4):365–380, 1996.
- C.W. Wampler: Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates. Mech. Mach. Theory 31(3): 331–337, 1996.
- P. Dietmaier: The Stewart-Gough platform of general geometry can have 40 real postures. In Advances in Robot Kinematics: Analysis and Control, ed. by J. Lenarcic and M.L. Husty, pages 1–10. Kluwer 1998.

Numerical Homotopy Continuation Methods

If we wish to solve $f(\mathbf{x}) = \mathbf{0}$, then we construct a system $g(\mathbf{x}) = \mathbf{0}$ whose solutions are known. Consider the *homotopy*

$$H(\mathbf{x},t) := (1-t)g(\mathbf{x}) + tf(\mathbf{x}) = \mathbf{0}.$$

By <u>continuation</u>, we trace the paths starting at the known solutions of $g(\mathbf{x}) = \mathbf{0}$ to the desired solutions of $f(\mathbf{x}) = \mathbf{0}$, for t from 0 to 1.

homotopy continuation methods are <u>symbolic-numeric</u>: homotopy methods treat polynomials as algebraic objects, continuation methods use polynomials as functions.

geometric interpretation: move from general to special, solve special, and move solutions from special to general.

The theorem of Bézout

Theorem: $f(\mathbf{x}) = \mathbf{0}$ has at most D isolated solutions in \mathbb{C}^n , counted with multiplicities. Sketch of Proof: $V = \{ (f, \mathbf{x}) \in \mathbb{P}(\mathcal{H}_D) \times \mathbb{P}(\mathbb{C}^n) \mid f(\mathbf{x}) = \mathbf{0} \}$ $\Sigma' = \{ (f, \mathbf{x}) \in V \mid \det(D_{\mathbf{x}}f(\mathbf{x})) = 0 \}, \Sigma = \pi_1(\Sigma'), \pi_1 : V \to \mathbb{P}(\mathcal{H}_D)$ Elimination theory: Σ is variety $\Rightarrow \mathbb{P}(\mathcal{H}_D) - \Sigma$ is connected. Thus $h(\mathbf{x}, t) = (1 - t)g(\mathbf{x}) + tf(\mathbf{x}) = \mathbf{0}$ avoids $\Sigma, \forall t \in [0, 1)$.

Implicitly defined curves

Consider a homotopy $h_k(x(t), y(t), t) = 0, \ k = 1, 2.$ By $\frac{\partial}{\partial t}$ on homotopy: $\frac{\partial h_k}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial h_k}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial h_k}{\partial t} \frac{\partial t}{\partial t} = 0, \ k = 1, 2.$ Set $\Delta x := \frac{\partial x}{\partial t}, \ \Delta y := \frac{\partial y}{\partial t}, \text{ and } \frac{\partial t}{\partial t} = 1.$

Increment
$$t := t + \Delta t$$

Solve $\begin{bmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = -\begin{bmatrix} \frac{\partial h_1}{\partial t} \\ \frac{\partial h_2}{\partial t} \end{bmatrix} (Newton)$
Update $\begin{cases} x := x + \Delta x \\ y := y + \Delta y \end{cases}$

Predictor-Corrector Methods

loop

1. predict
$$\begin{cases} t_{k+1} := t_k + \Delta t \\ \mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \Delta \mathbf{x} \end{cases}$$

2. correct with Newton

3. if convergence

then enlarge Δt

continue with k+1

else reduce Δt

back up and restart at kuntil t = 1.

Complexity Issues

The Problem: a hierarchy of complexity classes

- P : evaluation of a system at a point
- NP : find one root of a system
- #P : find **all** roots of a system (*intractable!*)

Complexity of Homotopies: for bounds on #Newton steps in a linear homotopy, see

- L. Blum, F. Cucker, M. Shub, and S. Smale: **Complexity and Real Computation**. Springer 1998.
- M. Shub and S. Smale: Complexity of Bezout's theorem V: Polynomial Time. Theoretical Computer Science 133(1):141–164, 1994.

On average, we can find an approximate zero in polynomial time.

Solution sets to polynomial systems

Polynomial in One Variable	System of Polynomials		
one equation, one variable	n equations, N variables		
solutions are points	points, lines, surfaces,		
multiple roots	sets with multiplicity		
Factorization: $\prod_{i} (x - a_i)^{\mu_i}$	Irreducible Decomposition		
Numerical Representation			
set of points	set of witness sets		

Witness Sets

- A witness point is a solution of a polynomial system which lies on a set of generic hyperplanes.
 - The <u>number of generic hyperplanes</u> used to isolate a point from a solution component

equals the **dimension** of the solution component.

• The <u>number of witness points</u> on one component cut out by the same set of generic hyperplanes

equals the **degree** of the solution component.

A witness set for a k-dimensional solution component consists of k random hyperplanes and a set of isolated solutions of the system cut with those hyperplanes.

Membership Test

Does the point **z** belong to a component?

- Given: a point in space $\mathbf{z} \in \mathbb{C}^N$; a system $f(\mathbf{x}) = \mathbf{0}$; and a witness set W, W = (Z, L): for all $\mathbf{w} \in Z : f(\mathbf{w}) = \mathbf{0}$ and $L(\mathbf{w}) = \mathbf{0}$.
- 1. Let $L_{\mathbf{z}}$ be a set of hyperplanes through \mathbf{z} , and define

$$h(\mathbf{x},t) = \begin{cases} f(\mathbf{x}) = \mathbf{0} \\ L_{\mathbf{z}}(\mathbf{x})t + L(\mathbf{x})(1-t) = \mathbf{0} \end{cases}$$

Trace all paths starting at w ∈ Z, for t from 0 to 1.
 The test (z, 1) ∈ h⁻¹(0)? answers the question above.

Numerical Algebraic Geometry Dictionary				
Algebraic Geometry	example in 3-space	Numerical Analysis		
variety	collection of points, algebraic curves, and algebraic surfaces	polynomial system + union of witness sets, see below for the definition of a witness set		
irreducible variety	a single point, or a single curve, or a single surface	polynomial system + witness set + probability-one membership test		
generic point on an irreducible variety	random point on an algebraic curve or surface	point in witness set; a witness point is a solution of polynomial system on the variety and on a random slice whose codimension is the dimension of the variety		
pure dimensional variety	one or more points, or one or more curves, or one or more surfaces	polynomial system + set of witness sets of same dimension + probability-one membership tests		
irreducible decomposition of a variety	several pieces of different dimensions	<pre>polynomial system + array of sets of witness sets and probability-one membership tests</pre>		

Factoring Solution Components

Input: $f(\mathbf{x}) = \mathbf{0}$ polynomial system with a positive dimensional solution component, represented by witness set.

coefficients of f known approximately, work with limited precision
<u>Wanted:</u> decompose the component into irreducible factors, for each factor, give its degree and multiplicity.
Symbolic-Numeric issue: essential numerical information (such as degree and multiplicity of each factor),

is obtained much faster than the full symbolic representation.

Monodromy to Decompose Solution Components

Given: a system $f(\mathbf{x}) = \mathbf{0}$; and W = (Z, L):

for all $\mathbf{w} \in Z : f(\mathbf{w}) = \mathbf{0}$ and $L(\mathbf{w}) = \mathbf{0}$.

Wanted: partition of Z so that all points in a subset of Z lie on the same irreducible factor.

Example: does f(x, y) = xy - 1 = 0 factor?

Consider
$$H(x, y, \theta) = \begin{cases} xy - 1 = 0 \\ x + y = 4e^{i\theta} \end{cases}$$
 for $\theta \in [0, 2\pi]$.

For $\theta = 0$, we start with two real solutions. When $\theta > 0$, the solutions turn complex, real again at $\theta = \pi$, then complex until at $\theta = 2\pi$. Back at $\theta = 2\pi$, we have again two real solutions, but their order is permuted \Rightarrow irreducible.

Connecting Witness Points

1. For two sets of hyperplanes K and L, and a random $\gamma \in \mathbb{C}$

$$H(\mathbf{x}, t, K, L, \gamma) = \begin{cases} f(\mathbf{x}) = \mathbf{0} \\ \gamma K(\mathbf{x})(1-t) + L(\mathbf{x})t = \mathbf{0} \end{cases}$$

We start paths at t = 0 and end at t = 1.

- For α ∈ C, trace the paths defined by H(x, t, K, L, α) = 0.
 For β ∈ C, trace the paths defined by H(x, t, L, K, β) = 0.
 Compare start points of first path tracking with end points of second path tracking. Points which are permuted belong to the same irreducible factor.
- 3. Repeat the loop with other hyperplanes.

Linear Traces – an example

Consider
$$f(x, y(x)) = (y - y_1(x))(y - y_2(x))(y - y_3(x))$$

= $y^3 - t_1(x)y^2 + t_2(x)y - t_3(x)$

We are interested in the linear trace: $t_1(x) = c_1 x + c_0$.

Sample the cubic at $x = x_0$ and $x = x_1$. The samples are $\{(x_0, y_{00}), (x_0, y_{01}), (x_0, y_{02})\}$ and $\{(x_1, y_{10}), (x_1, y_{11}), (x_1, y_{12})\}$.

Solve
$$\begin{cases} y_{00} + y_{01} + y_{02} = c_1 x_0 + c_0 \\ y_{10} + y_{11} + y_{12} = c_1 x_1 + c_0 \end{cases}$$
 to find c_0, c_1 .

With t_1 we can predict the sum of the y's for a fixed choice of x. For example, samples at $x = x_2$ are $\{(x_2, y_{20}), (x_2, y_{21}), (x_2, y_{22})\}$. Then, $t_1(x_2) = c_1x_2 + c_0 = y_{20} + y_{21} + y_{22}$.

Validation of Breakup with Linear Trace

Do we have enough witness points on a factor?

- We may not have enough monodromy loops to connect all witness points on the same irreducible component.
- For a k-dimensional solution component, it suffices to consider a curve on the component cut out by k - 1 random hyperplanes. The factorization of the curve tells the decomposition of the solution component.
- We have enough witness points on the curve if the value at the linear trace can predict the sum of one coordinate of all points in the set.

Notice: Instead of monodromy, we may enumerate all possible factors and use linear traces to certify. While the complexity of this enumeration is exponential, it works well for low degrees.

Results of Husty and Karger

Self-motions of Griffis-Duffy type parallel manipulators. In Proc. 2000 IEEE Int. Conf. Robotics and Automation (CDROM), 2000.

The special Griffis-Duffy platforms move:

- Case 1: Plates not equal, legs not equal.
 - Curve is degree 20 in Euler parameters.
 - Curve is degree 40 in position.
- Case 2: Plates congruent, legs all equal.
 - Factors are degrees (4+4) + 6 + 2 = 16 in Euler parameters.
 - Factors are degrees (8+8) + 12 + 4 = 32 in position.

Question: Can we confirm these results numerically?

Components of Griffis-Duffy Platforms

Solution components by degree

Husty & Karger		SVW			
Euler	Position	Study	Position		
General Case					
20	40	28	40		
Legs equal, Plates equal					
		6	8		
4	8	6	8		
4	8	6	8		
6	12	6	12		
2	4	4	4		
16	32	28	40		

Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz	Case A	Case B
witness points	$1 \mathrm{m} \ 12 \mathrm{s} \ 480 \mathrm{ms}$	
monodromy breakup	$33s \ 430ms$	$27\mathrm{s}~630\mathrm{ms}$
Newton interpolation	$1h \ 19m \ 13s \ 110ms$	2m $34s$ $50ms$

32 decimal places used to interpolate polynomial of degree 28

linear trace	4s 750ms	4s 320ms
--------------	----------	----------

Linear traces replace Newton interpolation:

 \Rightarrow time to factor independent of geometry!

for more...

• MCS 595 graduate seminar

```
meets every Thursday at 11:00
AM in 712 SEO
```

Call #68796, 1 hour credit

• MCS 563 Analytic Symbolic Computation

will likely run in 2004-2005