Homotopies for \textbf{Real} Polynomial Systems

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
jan@math.uic.edu

AIM workshop on convex algebraic geometry
Palo Alto, 21-25 Sep 2009
Outline

1. Problem Statement: Real Homotopy Continuation

2. Khovanskiĭ-Rolle Continuation (Bates & Sottile)
 - Gale Duality
 - Khovanskiĭ-Rolle Theorem

3. Sweeping Algebraic Curves (Piret & Verschelde)
 - reconditioning singularities with deflation
 - detection and location of singular points
 - neural network model and symmetric Stewart-Gough platform

4. Morse-Like Representations (Lu, Bates, Sommese & Wampler)
 - definition of data structures
 - ingredients of the algorithms
Homotopy Continuation Methods

One commonly used homotopy to solve $f(x) = 0$:

$$h(x, t) = (1 - t)g(x) + tf(x) = 0, \quad t \in [0, 1],$$

where $g(x) = 0$ is a good system with known start solutions.

Paths $x(t)$ defined by $h(x(t), t) = 0$ are tracked by continuation.

Solving over \mathbb{C} has several benefits:

1. geometric interpretation: from generic to specific
2. we avoid singularities except possibly at end of the paths
3. algorithms for a numerical irreducible decomposition

For an introduction to numerical algebraic geometry:

Real Problems

Solving over \mathbb{R} for given system with real coefficients means that we are mainly (or exclusively) interested in real solutions.

Some issues:
1. $\#\text{real solutions} \ll \#\text{complex solutions}$
2. no longer enough genericity to avoid singularities
3. examples like $x^2 - y^2z = 0$ complicate dimension count

Some answers:
1. Khovanskii-Rolle continuation for real isolated solutions
2. singularity detection and location when sweeping curves
3. Morse-like representation of a real algebraic curve
a new continuation algorithm

On input is a square Laurent system of n equations, with $n + \ell + 1$ distinct monomials.

Two steps in the new continuation algorithm:
1. Set up master equations using Gale duality.
2. Apply the Khovanskiĭ-Rolle theorem.

Proof of concept implementation using Maple 13 and Bertini 1.1.1 for $\ell = 2$.

Gale Duality

\[
\begin{align*}
\cd &= \gamma_{10} + \gamma_{11} \be^2 + \gamma_{12} a^{-1} b^{-1} e \\
\bc^{-1} e^{-2} &= \gamma_{20} + \gamma_{21} \be^2 + \gamma_{22} a^{-1} b^{-1} e \\
\ab^{-1} &= \gamma_{30} + \gamma_{31} \be^2 + \gamma_{32} a^{-1} b^{-1} e \\
\c^{-1} \de^{-1} &= \gamma_{40} + \gamma_{41} \be^2 + \gamma_{42} a^{-1} b^{-1} e \\
\bc^{-2} e &= \gamma_{50} + \gamma_{51} \be^2 + \gamma_{52} a^{-1} b^{-1} e
\end{align*}
\]

Laurent system

with few monomials:

\[5 + 2 + 1\]

\[\gamma_{ij} \in \mathbb{R} \setminus \{0\}\]

\[
\begin{bmatrix}
-1 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 \\
1 & 2 & 0 & -2 & 0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
-1 \\
1 \\
-2 \\
-2 \\
1
\end{bmatrix}
=\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

Jan Verschelde (UIC)
real homotopy continuation

AIM, 25 Sep 2009 6 / 34
Master Functions

\[
\begin{bmatrix}
-1 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 \\
1 & 2 & 0 & -2 & 0 & -1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
-1 & 1 \\
2 & 3 \\
-2 & 1 \\
-1 & 2 \\
1 & 6 \\
2 & 7 \\
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[
\begin{cases}
(a^{-1}b^{-1}e)^{-1} (be^2)^{-2} (cd)^1 (bc^{-1}e^{-2})^{-2} (ab^{-1})^{-1} (c^{-1}de^{-1})^1 (bc^{-2}e)^2 = 1 \\
(a^{-1}b^{-1}e)^1 (be^2)^{-3} (cd)^6 (bc^{-1}e^{-2})^{-2} (ab^{-1})^1 (c^{-1}de^{-1})^6 (bc^{-2}e)^7 = 1
\end{cases}
\]

Let \(x = a^{-1}b^{-1}e, \ y = be^2, \) then \(cd = L_1(x, y), \ bc^{-1}e^{-2} = L_2(x, y), \ ab^{-1} = L_3(x, y), \ c^{-1}de^{-1} = L_4(x, y), \ bc^{-2}e = L_5(x, y). \)
An Equivalent System

\[
\begin{cases}
(a^{-1}b^{-1}e)^{-1} (be^2)^{-2} (cd)^{1} (bc^{-1}e^{-2})^{-2} (ab^{-1})^{-1} (c^{-1}de^{-1})^{1} (bc^{-2}e)^{2} = 1 \\
(a^{-1}b^{-1}e)^{1} (be^2)^{-3} (cd)^{6} (bc^{-1}e^{-2})^{-2} (ab^{-1})^{1} (c^{-1}de^{-1})^{6} (bc^{-2}e)^{7} = 1
\end{cases}
\]

There is a bijection between \((a, b, c, d, e)\) and \((x, y)\).

\[
\begin{cases}
x^{-1} y^{-2} L_{1}^{1} L_{2}^{-2} L_{3}^{-1} L_{4}^{1} L_{5}^{2} = 1 \\
x y^{-3} L_{1}^{6} L_{2}^{-2} L_{3}^{1} L_{4}^{6} L_{5}^{7} = 1
\end{cases}
\]

Positive solutions lie inside

\[
\triangle := \{ (x, y) \mid x > 0, y > 0, L_i(x, y) > 0 \}
\]

F. Bihan and F. Sottile: \textit{Gale duality for complete intersections.}
Khovanskiĭ-Rolle Theorem

Between any two zeroes of g along an arc of f, there is at least one zero of $\det(df \wedge dg)$.

Khovanskiĭ-Rolle Continuation

Let f and g be the system of master functions in x and y.

1. Precomputation: solve the system $f = 0$ and $J = 0$, J is determinant of the Jacobian matrix.

2. Starting at solutions of $f = 0$ and $J = 0$ inside \triangle and solutions of $g = 0$ at the boundary of \triangle, trace curves to solutions of $f = 0$ and $g = 0$.

Complexity of precomputation is less than whole problem. Every real solution is found twice.

Numerical difficulties:

- relatively high degree polynomials
- start solutions may be singular ...
a more extreme example

\[
\begin{align*}
10500 - tu^{492} - 3500t^{-1}u^{463}v^5w^5 &= 0 \\
10500 - t - 3500t^{-1}u^{691}v^5w^5 &= 0 \\
14000 - 2t + tu^{492} - 3500v &= 0 \\
14000 + 2t - tu^{492} - 3500w &= 0
\end{align*}
\]

mixed volume: 7,663 counts #solutions in \((\mathbb{C}^*)^4\)

however: only six positive real solutions

On a 2.83 Ghz computer running CentOs:

- PHCpack takes about 40 minutes to solve the system.
- Proof of concept implementation of the new continuation algorithm takes 23 seconds.
Sweeping Algebraic Curves

A **homotopy** h is a family of systems, depending on a parameter. With **continuation** methods we track solution paths defined by h. We distinguish between two types of parameters:

1. a natural parameter λ, for example:

 $$ h(\lambda, x) = \lambda^2 + x^2 - 1 = 0. $$

 As λ varies we track the unit circle: $(\lambda, x(\lambda)) \in h^{-1}(0)$.

2. an artificial parameter t, for example:

 $$ h(t, \lambda, x) = \begin{cases}
 \lambda^2 + x^2 - 1 = 0 \\
 (\lambda - 2)t + (\lambda + 2)(1 - t) = 0.
 \end{cases} $$

 As t moves from 0 to 1, λ goes from -2 to $+2$ and we **sweep** points $(\lambda(t), x(\lambda(t)))$ on the unit circle.
Reconditioning Singularities via Deflation

restoring the quadratic convergence of Newton’s method

A solution z to $f(x) = 0$, $f = (f_1, f_2, \ldots, f_N)$, $x = (x_1, x_2, \ldots, x_n)$, $N > n$, is **singular** if the Jacobian matrix $A(x) = \left[\frac{\partial f_i}{\partial x_j} \right]$ has rank $R < n$ at z.

Choose $c \in \mathbb{C}^{R+1}$ and $B \in \mathbb{C}^{n\times(R+1)}$ at random. Introduce $R + 1$ new multiplier variables $\mu = (\mu_1, \mu_2, \ldots, \mu_{R+1})$. Apply the Gauss-Newton method to

\[
\begin{cases}
 f(x) = 0 & \text{Rank}(A(x)) = R \\
 A(x)B\mu = 0 & \downarrow \\
 c\mu = 1 & \text{coRank}(A(x)B) = 1
\end{cases}
\]

Recurse if necessary, $\#\text{deflations} < \text{multiplicity}$. An efficient implementation uses algorithmic differentiation.

Quadratic Turning Points
most common type of singularity

1 **Definition:** solution paths turn back
 when the parameter increases past a quadratic turning point.
 Properties: a double solution, corank of Jacobian equals one,
 transition point: complex ↔ real.

2 **Detection:** monitor orientation of tangent vectors.
 Two consecutive tangent vectors \(\mathbf{v}(t_1) \) and \(\mathbf{v}(t_2) \).
 Criterion: \(\langle \mathbf{v}(t_1), \mathbf{v}(t_2) \rangle < 0 \Rightarrow \mathbf{v}(t) \perp t-axis \text{ for } t \in [t_1, t_2] \).
 Tangents are simple byproduct of predictor-corrector path tracker.

3 **Location:** shooting method for step size.
 Consider \(\mathbf{x}(t) = \mathbf{x}(t_1) + h \mathbf{v}(t_1) \), find \(h \) and \(t \): \(\mathbf{v}(t) \perp t-axis \).
 Overshot turning point for \(h = h_2 \), at \(\mathbf{x}(t_2) \) path has turned back.

T.Y. Li and Z. Zeng: *Homotopy continuation algorithm for the real nonsymmetric eigenproblem: Further development and implementation.*
Sweeping a Circle

stepsizemath{h \ll 1}
Difficulties to Extend Approach
for any type of isolated singularity along a path

Detecting and locating quadratic turning points goes well.

Extending to any type of singularity has two difficulties:
1. detection: flip of tangent orientation no longer suffices
 \rightarrow the path tracker glides over the singularity
2. location: higher order singularities may have corank > 1
 \rightarrow the path tracker fails to converge

Solutions for these difficulties:
1. use a Jacobian criterion for detection, and
2. algebraic higher order predictor for location.

Neural Network Model

A family of polynomial systems for any dimension n

- Applying a sweep to the polynomial systems:

$$f(x, \lambda) = \begin{cases}
 x_1 x_2^2 + x_1 x_3^2 - \lambda x_1 + 1 = 0 \\
 x_2 x_1^2 + x_2 x_3^2 - \lambda x_2 + 1 = 0 \\
 x_3 x_1^2 + x_3 x_2^2 - \lambda x_3 + 1 = 0 \\
 \lambda + 1)(1 - t) + (\lambda - 1)t = 0
\end{cases}$$

- As t goes from 0 to 1, λ goes from -1 to $+1$.

- The tangent does not flip at the origin.
 The path tracker does not detect the quadruple point for $\lambda = 0$.
The Plot of Solution Paths for Neural Networks

the solution paths are really straight
Jumping Over Singularities

The shaded blue part is the region where Newton’s method converges. On straight curves, the path tracker will never cut back its step size.
Detection Algorithm Specification

Input: \(h(x, t) = 0; \)
\((t_1, t_2, t_3), t_1 < t_2 < t_3; \)
\((z_1, z_2, z_3): h(z_i, t_i) = 0, i = 1, 2, 3; \)
\((d_1, d_2, d_3): d_i = \text{det}(\partial_x h(z_i, t_i)), i = 1, 2, 3; \)
\(\delta > 0; \)
\(\epsilon > 0. \)

Output: \((t^*, z^*, d^*), h(z^*, t^*) = 0; \)
\(d^* = \text{det}(\partial_x h(z^*, t^*)), |d^*| < \epsilon; \)
or \(\emptyset, \) updated \((t_i, z_i, d_i), i = 1, 2, 3. \)
while (|d_1| > |d_2| < |d_3|) and (t_3 - t_1 > \delta) do
 t^* := \min \mathcal{P}((t_1, t_2, t_3), (d_1, d_2, d_3));
 (z^*, d^*) := \text{Newton}(h, t^*, z_2);
 if |d^*| < \epsilon then
 return (t^*, z^*, d^*);
 else if |d^*| \geq |d_2| then
 return \emptyset;
 else
 if t^* < t_2
 then (t_3, z_3, d_3) := (t_2, z_2, d_2);
 else (t_1, z_1, d_1) := (t_2, z_2, d_2);
 end if;
 (t_2, z_2, d_2) := (t^*, z^*, d^*);
 end if;
end while.
Numerical Stability

For determinant values \(d_1, d_2, \) and \(d_3, \) respectively at consecutive \(t_1, t_2, \) and \(t_3, \) \(t^* := \min P((t_1, t_2, t_3), (d_1, d_2, d_3)) \) is subject to roundoff error. \(t^* \) is computed via

\[
T = \frac{t_1^2(d_3 - d_2) + t_2^2(d_1 - d_3) + t_3^2(d_2 - d_1)}{2d_1(t_2 - t_3) + 2d_2(t_3 - t_1) + 2d_3(t_1 - t_2)}.
\]

We compute \(\tilde{T}, \) replacing in \(T \) \(d_1, d_2, \) and \(d_3 \) respectively by \(d_1(1 + \epsilon_1), d_2(1 + \epsilon_2), \) and \(d_3(1 + \epsilon_3) \) for errors \(\epsilon_1, \epsilon_2, \) and \(\epsilon_3.\)

\[
\tilde{T} - T = \frac{2\epsilon_1 d_1 t_{23} + 2\epsilon_2 d_2 t_{13} + 2\epsilon_3 d_3 t_{12}}{P}.
\]

with \(t_{23}, t_{13}, \) and \(t_{12} \) constants of magnitude \(> \delta\)
and \(P = t_1^2(d_3 - d_2) + t_2^2(d_1 - d_3) + t_3^2(d_2 - d_1).\)

\[\Rightarrow\] large relative errors only if \(d_1 \approx d_2 \approx d_3.\)
Numerical Conditioning

Worst case: straight path almost touches ellipses.

\[h(x, \lambda, t) = \begin{cases}
(x - 1 - \epsilon) \left(\frac{\lambda^2}{4} + x^2 - 1 \right) \\
\left(\frac{1}{4}(\lambda + 1)^2 + \frac{4}{9}(x + 1/2)^2 - 1 \right) \\
(1 - t)(\lambda + 2) + t(\lambda - 2) \end{cases} = 0 \quad t \in [0, 1]. \]

Plots for \(\epsilon = 0.05 \):
Polynomial Systems

the number of solutions in \mathbb{C}^n for generic choices of parameters

<table>
<thead>
<tr>
<th>Polynomial Systems</th>
<th>n</th>
<th>#Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Configurations</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>5</td>
<td>233</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>10</td>
<td>59049</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>15</td>
<td>14,348,907</td>
</tr>
<tr>
<td>Symmetrical Stewart-Gough Platforms</td>
<td>9</td>
<td>28 (real)</td>
</tr>
</tbody>
</table>

Table: Polynomial Systems which have higher-order multiple points
Molecular Configurations
applying the sweep homotopy algorithm to this system

- Applying a sweep to molecular configurations:

\[
\begin{align*}
\frac{1}{2}(x_2^2 + 4x_2x_3 + x_3^2) + \lambda(x_2^2x_3^2 - 1) &= 0 \\
\frac{1}{2}(x_3^2 + 4x_3x_1 + x_1^2) + \lambda(x_3^2x_1^2 - 1) &= 0 \\
\frac{1}{2}(x_1^2 + 4x_1x_2 + x_2^2) + \lambda(x_1^2x_2^2 - 1) &= 0 \\
(\lambda - 1)(1 - t) + (\lambda + 1)t &= 0.
\end{align*}
\]

- The tangent flips at the higher-order turning point at the origin.
- For \(\lambda = \pm 0.866025403780023 \) on symmetrical curves of degree 6 and one of the eigenvalues of the Jacobian matrix changes signs.
Symmetrical Stewart-Gough platforms

nine quadratic polynomial equations

\[f(x, L_1) = \begin{cases}
 f_i = (x_i - x_{i0})^2 + (y_i - y_{i0})^2 + z_i^2 - L_i^2, & i = 1, 2, \ldots, 6 \\
 f_7 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 - 2R_1^2(1 - \beta) \\
 f_8 = (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 - R_1^2 \\
 f_9 = (x_2 - x_0)^2 + (y_2 - y_0)^2 + (z_2 - z_0)^2 - R_1^2
\end{cases} \]

where

\[\begin{align*}
 x_i &= w_1 x_0 + w_2^{m_1} w_3^{m_2} x_1 + w_2^{m_2} w_3^{m_1} x_2 \\
 y_i &= w_1 y_0 + w_2^{m_1} w_3^{m_2} y_1 + w_2^{m_2} w_3^{m_1} y_2 \\
 z_i &= w_1 z_0 + w_2^{m_1} w_3^{m_2} z_1 + w_2^{m_2} w_3^{m_1} z_2
\end{align*} \]

Computational Results
on the symmetrical Stewart-Gough platforms

- Applying the Jacobian criterion globally leads to an augmented system with a mixed volume equal to 4,608. Tracking 4,608 paths in 16 variables is much more expensive than tracking 512 paths in 9 variables. Sweeping to find all critical points works in a more efficient setup: at most 28 paths in 9 variables.

- By fixing $L_i, i = 2, 3, \ldots, 6,$ to 1.5, 2.0, and 3.0, the sweep yields four special values for the natural parameter L_1 for each L_i.

- We have replicated the results from Wang and Wang’s paper with higher precision than what they reported. In addition, z_0 can be either positive or negative.
Given $f(x) = 0$, a real polynomial system.

$$Z_1(f) = \{ \text{all irreducible 1-dimensional solution sets in } \mathbb{C}^n \}$$

$$Z_{1\mathbb{R}}(f) = Z_1(f) \cap \mathbb{R}^n$$

$$= \{ \text{isolated real points on complex curves} \} \cup \{ \text{1-dimensional real connected components} \}$$

In addition to computing $Z_{1\mathbb{R}}(f)$, algorithms and data structures solve the membership problem:

1. does a solution belong to $Z_{1\mathbb{R}}(f)$?
2. to which real connected component does it belong to?

A Morse-like representation of a real algebraic curve $C_R \subset \mathbb{R}^n$ consists of

1. a generic linear projection $\pi : \mathbb{R}^n \rightarrow \mathbb{R}$;

2. a boundary point set $B_R = \{ B_1, B_2, \ldots, B_m \}$, $B_i \in \mathbb{R}^n$ for all i;

3. an edge set $E = \{ E_1, E_2, \ldots, E_r \}$, for all $k \in \{1, 2, \ldots, r\}$:

 $E_k = (\ell_k, r_k, x_k) \in (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \times \mathbb{R}^n$, where

 1. B_{ℓ_k} and B_{r_k} are left and right end points of edge e_k, if e_k extends to infinity to the left and/or right, then $\ell_k = -\infty$ and/or $r_k = +\infty$;

 2. $x_k \in e_k$ over a point of $\pi(e_k)$.
an illustration

\[f(x, y) = y^2 + x^2(x - 1)(x - 2) = 0 \]

\(Z_{1\mathbb{R}}(f) \) consists of \((0, 0)\) and one bounded curve.

The bounded curve of \(Z_{1\mathbb{R}}(f) \) is represented by two edges.
Ingredients of the Algorithms
assuming reduced complex curve

1. $Z_1(f)$ is computed via the solutions of

$$\begin{cases}
 f(x) = 0 \\
 c_0 + c^T x = 0 \\
\end{cases} \quad (c_0, c) \in \mathbb{C}^{n+1}.$$

The hyperplane defined by (c_0, c) and the solutions of $f(x) = 0$ on the hyperplane give a witness set W for $Z_1(f)$.

2. The boundary point set B_R is obtained via global deflation

$$\begin{cases}
 f(x) = 0 \\
 J_f(x) B z + \Lambda \\
\end{cases} \begin{bmatrix}
 t_1 c_1 z \\
 t_2 c_2 z \\
 \vdots \\
 t_{n-2} c_{n-2} z \\
\end{bmatrix} = 0$$

$$J_f = \left[\frac{\partial f}{\partial x} \right]$$

$B \in \mathbb{R}^{n \times (n-1)}$

$\Lambda \in \mathbb{C}^{(n-1) \times (n-2)}$

$\gamma \in \mathbb{C}$

cascade $t_i = 1 \rightarrow 0$
computing Morse-like representations

Once boundary point set \mathcal{B}_R is computed, do

1. Sort $\mathcal{B}_R = \{ B_1, B_2, \ldots, B_m \}$: $\pi(B_i) < \pi(B_{i+1})$, $i = 1, 2, \ldots, m - 1$.

2. Starting at points in witness set W for $Z_1(f)$, compute points \mathbf{x}_k on edges e_k, with homotopy

$$\begin{cases} f(\mathbf{x}) = 0 \\ (1 - t)(c_0 + \mathbf{c}^T \mathbf{x}) + t(\pi(\pi_W(\mathbf{x})) - s) = 0, \quad t \in [0, 1] \end{cases}$$

for all midpoints $s = (\pi(B_i) + \pi(B_{i+1}))/2$, $i = 1, 2, \ldots, m - 1$.

3. For every \mathbf{x}_k on edge e_k, use homotopy to track to left and right end point to compute ℓ_k and r_k of E_k.
Applications and Extensions

Application to a special Griffis-Duffy platform.

- A Stewart-Gough platform with special positions of ball joints at base and end plate.
- Direct position problem described by a polynomial system of 7 homogeneous polynomial equations.
- Special scaled mechanism with multiple components.

Conclusions

- computing real solutions involves searching for singularities
- many numerical challenges and complexity issues
- towards a numerical cylindrical algebraic decomposition?