
Computing Power Series accurately with
Graphics Processing Units (preliminary report)

Jan Verschelde†

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
https://github.com/janverschelde

https://www.youtube.com/@janverschelde5226
janv@uic.edu

AMS Special Session on Polynomial Systems, Homotopy Continuation
and Applications, 4 January 2023

†Supported by the National Science Foundation, grant DMS 1854513.

Jan Verschelde (UIC) Computing Power Series JMM, 4 January 2023 1 / 20



Outline

1 Introduction
problem statement
multiple double arithmetic
graphics processing units

2 Accelerated Newton
setup and scalability parameters
staggered computations
computational results

Jan Verschelde (UIC) Computing Power Series JMM, 4 January 2023 2 / 20



problem statement

The problem is to make Newton’s method scalable,
that is: for thousands (or more) equations and variables,
to compute power series accurately.

On power series, the computational bottlenecks involve
1 evaluation and differentiation require convolutions, and
2 solution of a lower triangular block Toeplitz system.

The two main concerns of performance and convergence
impose regularity assumptions on the input.

Three parameters to scale:
1 n is the number of variables;
2 d is the order of the series, truncation degree; and
3 p is the precision.
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a task graph for a triangular block Toeplitz system

Q,R = qr(A0)

x0 = R−1QHb0

b1 = b1 − A1x0 b2 = b2 − A2x0 b3 = b3 − A3x0

x1 = R−1QHb1

b2 = b2 − A1x1 b3 = b3 − A2x1
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-

-

-
???

??

?

J
JĴ
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linearizes A(t)x(t) = b(t), with

A(t) = A0 + A1t + A2t2 + A3t3,

x(t) = x0 + x1t + x2t2 + x3t3, b(t) = b0 + b1t + b2t2 + b3t3.
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multiple double arithmetic / error free transformations

From An Algorithm for Analytic Continuation by Peter Henrici,
J. SIAM Numer. Anal., Vol. 3, No. 1, pages 67–78, 1966:
“Some reflection shows that in order to get a convergent process
the early vectors A(k)

n (early with respect to k) must be computed
more accurately than the late ones.”

A multiple double is an unevaluated sum of doubles.

The 2-norm of a vector of dimension 64 of random complex
numbers on the unit circle equals 8. Observe the second double:

double double : 8.00000000000000E+00 - 6.47112461314111E-32
quad double : 8.00000000000000E+00 + 3.20475411419393E-65
octo double : 8.00000000000000E+00 - 9.72609915198313E-129

If the result fits exactly in a 64-bit floating-point number,
then the second double is the roundoff error, or its accuracy.
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cost overhead factors — software packages

The number of floating-point operations for multiple double arithmetic are
cost overhead factors:

+ ⋆ / average
double double 20 32 70 37.7
quad double 89 336 893 439.3
octo double 269 1742 5126 2379.0

QDlib by Y. Hida, X. S. Li, and D. H. Bailey.
Algorithms for quad-double precision floating point arithmetic.
In the Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, pages 155–162, 2001.

CAMPARY by M. Joldes, J.-M. Muller, V. Popescu, and W. Tucker.
CAMPARY: Cuda Multiple Precision Arithmetic Library and
Applications. In Mathematical Software – ICMS 2016, the 5th
International Conference on Mathematical Software, pages 232–240,
Springer-Verlag, 2016.
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related work and alternatives
T. Nakayama and D. Takahashi. Implementation of
multiple-precision floating-point arithmetic library for GPU
computing. In Proc. 23rd IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS 2011),
pages 343–349. ACTA Press, 2011.

N. Maho. MPLAPACK version 2.0.1. user manual
arXiv:2109.13406v2 [cs.MS] 12 Sep 2022.

K. Isupov and V. Knyazkov. Multiple-precision matrix-vector
multiplication on graphics processing units.
Program Systems: Theory and Applications 11(3): 62–84, 2020.

▶ The double double arithmetic of CAMPARY performs best for the
problem of matrix-vector multiplication.

▶ Concerning quad double precision, “the CAMPARY library is faster
than our implementation; however as the precision increases the
execution time of CAMPARY also increases significantly.”
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Graphics Processing Units (GPUs)

Data parallel algorithms execute the same
Single Instruction on Multiple Data elements (SIMD).

Memory bandwidth of GPUs is typically ten times higher
than the memory bandwidth of CPUs.

Definition (CGMA ratio)
The Compute to Global Memory Access (CGMA) ratio is
the number of floating-point calculations performed by a kernel
for each access to the global memory.

Starting with complex double double and quad double arithmetic,
computations become compute bound instead of memory bound.

The NVIDIA K20C, P100, and V100 (also the A100 and H100)
are capable of teraflop performance in double precision.

One teraflops is one trillion floating-point operations per second.
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prior work

S. Telen, M. Van Barel, and J. Verschelde. Robust numerical
tracking of one path of a polynomial homotopy on parallel
shared memory computers. In the Proceedings of the 22nd
International Workshop on Computer Algebra in Scientific
Computing (CASC 2020), pages 563–582. Springer-Verlag, 2020.

J. Verschelde. Accelerated polynomial evaluation and
differentiation at power series in multiple double precision.
In the 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 740–749. IEEE, 2021.

J. Verschelde. Least squares on GPUs in multiple double
precision. In the 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 828–837.
IEEE, 2022.
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monomial homotopies

Consider n variables x, A is an n-by-n exponent matrix, and
b(t) is a vector of n series of order O(td):

xA = b(t) is a monomial homotopy.

For example, n = 3, x = [x1, x2, x3]:

A =

 1 0 0
1 1 0
1 1 1

 
x1 = b1(t)
x1x2 = b2(t)
x1x2x3 = b3(t)

x1(t) = exp(α1t) + O(td)
x2(t) = exp(α2t) + O(td)
x3(t) = exp(α3t) + O(td)

where

exp(αt) + O(t4) = 1 + αt +
α2

2!
t2 +

α3

3!
t3 + O(t4),

with α ∈ [−1,−1 + δ] ∪ [1 − δ, 1], δ > 0, or |α| = 1 for random α ∈ C.

Jan Verschelde (UIC) Computing Power Series JMM, 4 January 2023 10 / 20



order of series, accuracy and precision

exp(t) =
d−1∑
k=0

tk

k !
+ O(td)

k 1/k ! recommended precision
7 2.0e-004 double precision okay

15 7.7e-013 use double doubles
23 3.9e-023 use double doubles
31 1.2e-034 use quad doubles
47 3.9e-060 use octo doubles
63 5.0e-088 use octo doubles
95 9.7e-149 need hexa doubles

127 3.3e-214 need hexa doubles
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scalability parameters

1 Going from one to two columns of monomials:

c1xA1 + c2xA2 = b(t),

for two n-vectors c1 and c2 and two exponent matrices A1 and A2.
2 For increasing dimensions: n = 64,128,256,512,1024.
3 For increasing orders d in O(td), d = 1,2,4,8,16,32,64.
4 For increasing precision:

double, double double, quad double, octo double.

Doubling columns, dimensions, orders, and precision,
how much of the overhead can be compensated by GPU acceleration?
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different types of accelerated computations

1 convolutions for evaluation and differentiation
2 Householder QR
3 QHb computations
4 back substitutions to solve Rx = QHb
5 updates b = b − Ax
6 residual computations ∥b − Ax∥1

Which of the six types occupies most time?
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staggered computations

Computing x(t) = x0 + x1t + x2t2 + · · ·+ xd−1td−1, observe:

1 Start x0 with half its precision correct,
otherwise Newton’s method may not converge.

2 Increase d in the order O(td) gradually,
e.g.: the new d is d + 1 + d/2,
hoping (at best) for quadratic convergence.

3 Once xk is correct, the corresponding bk = 0,
as bk is obtained by evaluation, and then the update ∆xk should
no longer be computed because

QR∆xk = bk = 0 ⇒ ∆xk = 0.

This gives a criterion to stop the iterations.
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graphics processing units

The code was developed for the “Volta” V100 NVIDIA GPU,
and tested on the “Pascal” P100 and RTX 2080 NVIDIA GPUs.

NVIDIA GPU CUDA #MP #cores/MP #cores GHz
Pascal P100 6.0 56 64 3584 1.33

Volta V100 7.0 80 64 5120 1.91
GeForce RTX 2080 7.5 46 64 2944 1.10

The double precision peak performance of the P100 is 4.7 TFLOPS.
At 7.9 TFLOPS, the V100 is 1.68 times faster than the P100.

To evaluate the algorithms, compare the ratios of the wall clock times
on the P100 over V100 with the factor 1.68.

For every kernel, the number of arithmetical operations is
accumulated. The total number of double precision operations is
computed using the cost overhead multipliers.
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n = 1024, d = 64, 24 steps in octo double precision
On one column of monomials, triangular exponent matrix of ones.
Six different types of accelerated computations, on the V100.
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doubling precisions, wall clock and kernel times

On one column of monomials, triangular exponent matrix of ones,
n = 1024, d = 64, 24 steps, in 4 different precisions, on the V100:

Doubling the precision less than doubles the wall clock time
and increases the time spent by all kernels.
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teraflop performance of convolutions

On one column of monomials, triangular exponent matrix of ones,
n = 1024, performance of the evaluation and differentiation,
in octo double precision, for increasing orders of the series:

After degree 40, teraflop performance is observed on the V100.
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comparing GPUs

Householder QR on quad double matrix, n = 1024 = 16 × 64.

Performance on V100: 1.687 Teraflops, on P100: 1.169 Teraflops.

Ratio of milliseconds P100 over V100: 6059.121/4197.730 ≈ 1.44.
The theoretical peak performance ratio is 1.68.

RTX 2080 takes 82.553 seconds, with 87.556 Gigaflops performance.
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Conclusions

Bringing HPC into PHC . . .

Octo double precision suffices for series of order 64.
Teraflop performance of the evaluation and differentiation
is already attained at order 40.
The convolutions to evaluate and differentiate at power series
remain a significant portion of all computational work.
Doubling precisions less than doubles the wall clock times
because the computations are then compute bound and thus
well suited for acceleration by graphics processing units.

. . . is still a work in progress.
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