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problem statement

A polynomial homotopy is a family of polynomial systems,
where the systems in the family depend on one parameter.

At a singular point, the matrix of all partial derivatives is not full rank.

The location problem asks to detect the value of the parameter in the
homotopy where a singular point occurs.

The approximation problem asks to accurately determine the
coordinates of the singular point, once located.

We want an efficient and reliable criterion to decide whether singular
points are at infinity or not.
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power series developments of Viviani’s curve

Viviani’s curve expanded around (0,0,2):

Looking at series of increasing orders, we observe their intersection as
a predictor for the singular point where Viviani’s curve intersects itself.
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detecting nearby singularities

Applying the ratio theorem of Fabry, we can detect singular points
based on the coefficients of the Taylor series.

Theorem (the ratio theorem, Fabry 1896)

If for the series x(t) = c0 + c1t + c2t2 + · · ·+ cntn + cn+1tn+1 + · · · ,
we have lim

n→∞
cn/cn+1 = z, then

z is a singular point of the series, and
it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is less than |z|.

The ratio cn/cn+1 is the pole of Padé approximants of degrees [n/1]
(n is the degree of the numerator, with linear denominator).
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the ratio theorem of Fabry and Padé approximants

Consider n = 3, x(t) = c0 + c1t + c2t2 + c3t3 + c4t4.

[3/1] =
a0 + a1t + a2t2 + a3t3

1 + b1t

(c0 + c1t + c2t2 + c3t3 + c4t4)(1 + b1t) = a0 + a1t + a2t2 + a3t3

c0 + c1t + c2t2 + c3t3 + c4t4

+ b1c0t + b1c1t2 + b1c2t3 + b1c3t4 = a0 + a1t + a2t2 + a3t3

We solve for b1 in the term for t4: c4 + b1c3 = 0 ⇒ b1 = −c4/c3.

The denominator of [3/1] is 1 − c4/c3t . The pole of [3/1] is c3/c4.
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an example not covered by Fabry’s theorem

h(x , t) = x2 − (t − 1)4 = (x − (t − 1)2)(x + (t − 1)2) = 0
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difference with Cauchy integrals

Use function values around the regular point at 0
to compute the coefficients of the Taylor series:

r

t0 1

Use function values around the singularity at 1
to compute the coefficients of the Laurent series:

r

t0 1

In both cases, what is a good step size r?
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Taylor series of roots of a polynomial homotopy

Consider the homotopy

h(x , t) = x2 − 1 + t = 0,

where x is the variable and t the parameter.

At t = 0, the solutions are x = ±1.
At t = 1, we have the double root x = 0.

In this test problem, starting at t = 0,
we compute 1 as the nearest singularity.
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x(t) = (1 − t)1/ω, ω = 2,3,4,5
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testing for divergence

For testing, consider the monomial homotopy:

x2 = 1 − t ,
x y = 1.

As t → 1, x(t) → 0 and y(t) → ∞.

Apply the series of log(1 − t) = −t − t2

2
− t3

3
− t4

4
+ O(t5)

to the series for x(t) and y(t):

log(1 − x(t)) = − t
2
− t2

4
− t3

6
− t4

8
+ O(t5),

log(1 − y(t)) = +
t
2
+

t2

4
+

t3

6
+

t4

8
+ O(t5).

The distinction between convergence and divergence can be made.
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log(1 − x(t)), for x(t) = (1 − t)1/ω, ω = 2,3,4,5

The expansions of log(1 − x(t)):

ω = 2 : − t
2
− t2

4
− t3

6
− t4

8
+ O(t5)

ω = 3 : − t
3
− t2

6
− t3

9
− t4

12
+ O(t5)

ω = 4 : − t
4
− t2

8
− t3

12
− t4

16
+ O(t5)

ω = 5 : − t
5
− t2

10
− t3

15
− t4

20
+ O(t5)

For log(1 − y(t)) in xω = 1 − t , x y = 1, flip signs.
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reduce to convergence radius one

Let cn be the coefficient of tn in the Taylor series.

Consider what happens if n grows:

∣∣∣∣ cn

cn+1

∣∣∣∣ →


|z| < 1 : coefficients increase,
|z| = 1 : coefficients are constant,
|z| > 1 : coefficients decrease.

Lemma (reduction to convergence radius one, CASC 2022)
Let x(t) be a power series with cn as the coefficient of tn and

lim
n→∞

cn

cn+1
= z ∈ C \ {0}.

Then the series x(t = |z|s) has convergence radius equal to one.
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convergence of the coefficient ratios

Proposition (convergence of the coefficient ratios, CASC 2022)
Assume x(t) is a series which satisfies the conditions of the
ratio theorem of Fabry, with a radius of convergence equal to one.
Let cn be the coefficient of tn in the series, then∣∣∣∣1 − cn

cn+1

∣∣∣∣ is O(1/n)

for sufficiently large n.

The good and the bad:

+ It confirms extensive computational experiments: using 8 terms of
series are sufficient to avoid a singularity in the step size control.

− The O(1/n) grows very slowly, e.g. 1/64 ≈ 0.016, 1/256 ≈ 0.004.
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one extra bit of accuracy after each doubling of n
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Richardson extrapolation

f (n) = 1 + γ1

(
1
n

)
+ γ2

(
1
n

)2

+ · · ·

f (2n) = 1 + γ1

(
1

2n

)
+ γ2

(
1

2n

)2

+ · · ·

2f (2n)− f (n) = 2 + 2γ1

(
1

2n

)
+ 2γ2

(
1

2n

)2

+ · · ·

−1 − γ1

(
1
n

)
− γ2

(
1
n

)2

− · · ·

2f (2n)− f (n) = 1 + β2

(
1
n

)2

+ · · ·
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on the effectiveness of Richardson extrapolation

Input: f (2), f (4), f (8), . . ., f (2N).
Output: Ti,j , the triangular table of extrapolated values.

1 Ti,1 = f (2i), for i = 1,2,3, . . . ,N.
2 For j = i , i + 1, . . . ,N and for i = 2,3, . . . ,N:

Ti,j =
2iTi,j−1 − T1,j−1

2i − 1
.

Corollary (Richardson extrapolation accelerates, CASC 2022)
Assuming the convergence radius equals one, applying Richardson
extrapolation N times on a Taylor series truncated after n terms,
results in an O(1/nN+1) error on the radius of convergence.

+ With 64 terms, about 8 decimal places of accuracy are obtained.
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Aitken extrapolation

Given is a sequence x of n numbers, x = x1, x2, . . . , xn.

Assume geometric convergence to the limit z with ratio r :

xk+1 − z = r(xk − z), |r | < 1.

Aitken extrapolation constructs a new sequence y of n − 2 numbers,
using the formula

yk = xk − (xk+1 − xk )
2

xk+2 − 2xk+1 + xk
, k = 1,2, . . . ,n − 2.

We apply this formula repeatedly, setting y to x,
for as long as n ≥ 2.
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repeated Aitken on x(t) = (1 − t)1/ω, ω = 2,3,4,5

SymPy computes the Taylor series of (1 − t)1/ω up to order 64.
Let cn be the coefficient with tn, then

cn

cn+1
→ R = 1 and

63∑
n=0

cn → S = 0.

Running Aitken repeatedly with exact rational arithmetic:

ω error on R error on S
2 2.29e-11 3.51e-07
3 2.02e-11 3.14e-05
4 1.89e-11 3.41e-04
5 1.81e-11 1.51e-03

Aitken is effective to locate and approximate the singularity,
ω has no effect on R, but its influence is observed on S.
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Aitken for the convergence radius

Let cn be the coefficient of tn and assume lim
n→∞

(
cn

cn+1

)
= 1.

To compute the ratio r in

cn+1

cn+2
− 1 = r

(
cn

cn+1
− 1

)
,

substitute

cn

cn+1
= 1 + γ1

(
1
n

)
+ O

(
1
n2

)
,

cn+1

cn+2
= 1 + γ1

(
1

n + 1

)
+ O

(
1
n2

)
,

which leads to

γ1

(
1

n + 1

)
= r γ1

(
1
n

)
⇒ r =

n
n + 1

< 1.
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geometric ratio for two consecutive terms

The ratio r = rn =
n

n + 1
depends on n.

Consider:

n
n + 1

= 1 +
n

n + 1
− 1 = 1 +

n
n + 1

− n + 1
n + 1

= 1 − 1
n + 1

and
1
n
− 1

n + 1
=

n + 1 − n
n(n + 1)

=
1

n(n + 1)
≈ 1

n2 .

Therefore,

rn = 1 − 1
n + 1

≈ 1 − 1
n
= rn−1,

with an error approximately equal to 1/n2.
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Aitken for the sum

Let Sn =
n∑

i=0

ci and assume lim
n→∞

Sn = 0.

This assumption implies Sn+1 < Sn, for sufficiently large n.

And therefore, the ratio r in

Sn+1 − 0 = r (Sn − 0) ⇒ r =
Sn+1

Sn
< 1.

The ratio r depends also on n, but assuming convergence, it is
expected that the difference between rn and rn−1 is of a lesser order.
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going past versus going towards a singularity
Going past a singularity (the red dot):

r
R

t0

r

R

t0

Going towards a singularity (the red dot):

r
R

t0 t0
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the last pole

Consider a path x(t) heading towards t = 1.

The last pole ρ, marked by the hollow circle on the figure below, is the
last value for t , with nonzero imaginary part, for which x(t) is singular.

ρ

t
1

t0 < t∗

ρ

t
1

t0 = t∗

ρ

t
1

t∗ < t0

1 t0 < t∗: the proximity to ρ determines the step size.
2 t0 = t∗: the critical equidistant location to ρ and 1.
3 t0 > t∗: we are heading towards the end of the path.

At t0 = t∗, the homotopy will be reconditioned.
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recentering and scaling the radius of convergence

At the critical distance to the last pole ρ:
ρ

t
1

t0 = t∗

ρ̂

t
1

0

At the right, after recentering the series at t = 0 and scaling,
the distance to the closest singularity equals 1,
as in the monomial homotopies case studies.
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recenter, scale and shift

At t0 = t∗ is the critical spot between the last pole ρ and 1:

R = |ρ− t∗| = |1 − t∗|.

The reconditioning of the homotopy involves a scale and shift:
the scale ensures R = 1, then recenter series so t∗ = 0,
the shift makes x(0) = 1.

Benefits from the reconditioning:
R = 1 avoids excessive growth of decay of the series coefficients.
x(0) = 1 allows the application of log(1 − x) to detect divergence.

If the shift is omitted, then look at the expansion of log(x(0)− x(t)).
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numerical reconditioning of the homotopy

If the radius of convergence of the series x(t) is R,
then, after substitution t = Rs, x(s) has convergence radius one.

The reconditioning is limited by the accuracy of the ratio R.

If R < 1, then the coefficient growth leads to numerical instabilities.

A staggered and iterative method is needed:
staggered: for d = 8,16,24,32, . . ., and
iterative: scale with R8,R16,R24,R32, . . ..

With extrapolation, R64 has an accuracy of 8 decimal places,
but much less accuracy is needed to estimate the magnitude of R.

Multiprecision may be needed for intermediate coefficient growth.
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using partial derivatives

For general singularities, compute a linear combination of the columns
of the matrix of all partial derivatives that makes zero.

For example, for f (x , y) = 0, g(x , y) = 0, consider
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

 =

[
a1,1(t) a1,2(t)

a2,1(t) a2,2(t)

]
,

after substitution of the series x(t) and y(t).

Then apply a QR decomposition to find a nonzero vector
that makes a zero vector.

This generalizes the series sums that converge to zero
in the monomial homotopy case studies.
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an example of Ojika, 1987

f(x , y) =
{

x2 + y − 3 = 0
x + 0.125y2 − 1.5 = 0

has a triple root at (1,2). Using a total degree start system with
random γ, the t0 after t∗ was found at t0 = 0.956.

After reconditioning, with order n = 64, the location is estimated at

1.0265192231142901 + 2.9197227799819557E−05 I

and improved with Richardson extrapolation to

0.9999729580138075 + 8.484367218447337E−06 I,

which locates the singularity with an error of 10−6.

Done with sympy 1.4, mpmath 1.1.0, and phcpy 1.1.1 (CASC 2022).
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one fourfold cyclic 9-root

The cyclic 9-roots problem (solved by Faugère in 2001)
has several isolated roots of multiplicity four.

With the plain blackbox solver of PHCpack,
one path was selected that ended at one of the fourfold roots.

The t0 after t∗, the location of the last pole, is t0 = 0.99832.

After reconditioning, with n = 32, the convergence radius is

1.00000000099639 + 4.319265E−09 I

and confirmed in double double precision.

Because of the close proximity to the singularity,
no extrapolation is necessary in this case.
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conclusions

Assuming effective methods (symbolic, Newton, Fourier, ...) to
compute Taylor series, singularities can be located and approximated.

Taylor series are a better tool than the singular value decomposition,
because with Taylor series we are at a safe distance from singularities.

Reconditioning the homotopy is needed for numerical stability.
Use log(x(0)− x(t)) to decide if x(t) converges or not.
Richardson extrapolation is effective for the convergence radius.
Aitken extrapolation works too.
To compute the coordinates of singular solutions,
Aitken extrapolation is sensitive to the winding numbers.
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