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Outline of Talk

1. Some Motivating Examples

2. Numerical Algebraic Geometry

• homotopy continuation methods

• numerical irreducible decomposition

3. Incrementally Solving Polynomial Systems

• diagonal homotopies to intersect components

• intrinsic and extrinsic representations

4. Results on the Examples
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Example 1. A Seven-Bar Structure
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Problem: Find all possible assemblies of these pieces.
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One possible assembly
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• Generally, 18 solutions. (This example, 8 real, 10 complex.)

• Intersection of two four-bar coupler curves.

4



'

&

$

%

Question:

What if the four-bars have the same coupler curve

(Roberts cognates)?

• Structure has mobility = 0.

• The common four-bar coupler curve (degree 6) is a solution.

• Is the four-bar curve the only solution?

• This is an overconstrained mechanism.
– How do we treat it numerically?
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Example 2. Spatial Six-Positions

Planar Body Guidance (Burmester 1874)

• 5 positions determine 6 circle-point/center-point pairs
• 4 positions give cubic circle-point & center-point curves

Spatial Body Guidance (Shoenflies 1886)

• 7 positions determine 20 sphere-point/center-point pairs
• 6 positions give 10th-degree sphere-point & center-point
curves

Question: Can we confirm this result using continuation?
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Example 3. Stewart-Gough Platforms

Special Griffis-Duffy type

• Base and endplate are equilateral triangles.

• Legs connect vertices to midpoints.
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Results of Husty and Karger

Self-motions of Griffis-Duffy type parallel manipulators. In Proc. 2000

IEEE Int. Conf. Robotics and Automation (CDROM), 2000.

The special Griffis-Duffy platforms move:

• Case 1: Plates not equal, legs not equal.
– Curve is degree 20 in Euler parameters.

– Curve is degree 40 in position.

• Case 2: Plates congruent, legs all equal.
– Factors are degrees (4+ 4)+ 6+ 2 = 16 in Euler parameters.

– Factors are degrees (8 + 8) + 12 + 4 = 32 in position.

Question: Can we confirm these results numerically?
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2. Numerical Homotopy Continuation Methods

If we wish to solve f(x) = 0, then we construct a system g(x) = 0

whose solutions are known. Consider the homotopy

H(x, t) := (1− t)g(x) + tf(x) = 0.

By continuation, we trace the paths starting at the known solutions

of g(x) = 0 to the desired solutions of f(x) = 0, for t from 0 to 1.

homotopy continuation methods are symbolic-numeric:

homotopy methods treat polynomials as algebraic objects,

continuation methods use polynomials as functions.
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Solution sets to polynomial systems

Polynomial in One Variable System of Polynomials

one equation, one variable n equations, N variables

solutions are points points, lines, surfaces, . . .

double roots sets with multiplicity

Factorization:
∏

i

(x− ai)
µi Irreducible Decomposition

Numerical Representation

set of points set of witness point sets
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An Illustrative Example

f(x, y, z) =















(y − x2)(x2 + y2 + z2 − 1)(x− 0.5) = 0
(z − x3)(x2 + y2 + z2 − 1)(y − 0.5) = 0

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5) = 0

Irreducible decomposition of Z = f−1(0) is

Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}
with 1. Z21 is the sphere x

2 + y2 + z2 − 1 = 0,
2. Z11 is the line (x = 0.5, z = 0.5

3),

3. Z12 is the line (x =
√
0.5, y = 0.5),

4. Z13 is the line (x = −
√
0.5, y = 0.5),

5. Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0),

6. Z01 is the point (x = 0.5, y = 0.5, z = 0.5).
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Witness Point Sets

A witness point is a solution of a polynomial system which lies

on a set of generic hyperplanes.

• The number of generic hyperplanes used to isolate a point from
a solution component

equals the dimension of the solution component.

• The number of witness points on one component cut out by the
same set of generic hyperplanes

equals the degree of the solution component.

A witness point set for a k-dimensional solution component

consists of k random hyperplanes and a set of isolated solutions

of the system cut with those hyperplanes.
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Membership Test

Does the point z belong to a component?

Given: a point in space z ∈ CN ; a system f(x) = 0;

and a witness point set W , W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

1. Let Lz be a set of hyperplanes through z, and define

H(x, t) =







f(x) = 0

Lz(x)t+ L(x)(1− t) = 0

2. Trace all paths starting at w ∈ Z, for t from 0 to 1.

3. The test (z, 1) ∈ H−1(0)? answers the question above.
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Numerical Algebraic Geometry Dictionary

Algebraic example Numerical
Geometry in 3-space Analysis

variety collection of points, polynomial system
algebraic curves, and + union of witness point sets, see below
algebraic surfaces for the definition of a witness point

irreducible a single point, or polynomial system
variety a single curve, or + witness point set

a single surface + probability-one membership test

generic point random point on point in witness point set; a witness point
on an an algebraic is a solution of polynomial system on the

irreducible curve or surface variety and on a random slice whose
variety codimension is the dimension of the variety

pure one or more points, or polynomial system
dimensional one or more curves, or + set of witness point sets of same dimension
variety one or more surfaces + probability-one membership tests

irreducible several pieces polynomial system
decomposition of different + array of sets of witness point sets and
of a variety dimensions probability-one membership tests
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History of Numerical Irreducible Decomposition

A.J. Sommese and C.W. Wampler: Numerical algebraic geometry. In The

Mathematics of Numerical Analysis, ed. by J. Renegar, M. Shub, and

S. Smale, pages 749–763, AMS, 1996.

A.J. Sommese and J. Verschelde: Numerical homotopies to compute generic

points on positive dimensional algebraic sets. J. of Complexity

16(3):572–602, 2000.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical decomposition of

the solution sets of polynomial systems into irreducible components.

SIAM J. Numer. Anal. 38(6):2022–2046, 2001.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Using monodromy to

decompose solution sets of polynomial systems into irreducible

components. In Application of Algebraic Geometry to Coding Theory,

Physics and Computation, ed. by C. Ciliberto, F. Hirzebruch, R. Miranda, and

M. Teicher, pages 297–315, Kluwer, 2001.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Symmetric functions applied

to decomposing solution sets of polynomial systems. SIAM J. Numer.

Anal., to appear.
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Numerical Factorization of Multivariate Polynomials

E. Kaltofen: Challenges of symbolic computation: my favorite open

problems. J. Symbolic Computation 29(6): 891–919, 2000.

Y. Huang, W. Wu, H.J. Stetter, and L. Zhi: Pseudofactors of multivariate

polynomials. In Proceedings of ISSAC 2000, ed. by C. Traverso, pages

161–168, ACM 2000.

R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas and S.M. Watt:

Towards factoring bivariate approximate polynomials. In Proceedings of

ISSAC 2001, ed. by B. Mourrain, pages 85–92, ACM 2001.

A. Galligo and D. Rupprecht: Semi-numerical determination of irreducible

branches of a reduced space curve. In Proceedings of ISSAC 2001, ed. by

B. Mourrain, pages 137–142, ACM 2001.

A. Galligo and D. Rupprecht: Irreducible decomposition of curves. J.

Symbolic Computation 33(5):661–677, 2002.

T. Sasaki: Approximate multivariate polynomial factorization based on

zero-sum relations. In Proceedings of ISSAC 2001, ed. by B. Mourrain,

pages 284–291, ACM 2001.

R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt: A geometric-numeric

algorithm for absolute factorization of multivariate polynomials. In

Proceedings of ISSAC 2002, ed. by T. Mora, pages 37–45, ACM 2002.
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Monodromy to Decompose Solution Components

Given: a system f(x) = 0; and W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

Wanted: partition of Z so that all points in a subset of Z

lie on the same irreducible factor.

Example: does f(x, y) = xy − 1 = 0 factor?

Consider H(x, y, θ) =







xy − 1 = 0
x+ y = 4eiθ

for θ ∈ [0, 2π].

For θ = 0, we start with two real solutions. At θ = π, the real

solutions have turned complex. Back at θ = 2π, we have again two

real solutions, but their order is permuted ⇒ irreducible.
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Connecting Witness Points

1. For two sets of hyperplanes K and L, and a random γ ∈ C

H(x, t,K, L, γ) =







f(x) = 0

γK(x)(1− t) + L(x)t = 0

We start paths at t = 0 and end at t = 1.

2. For α ∈ C, trace the paths defined by H(x, t,K, L, α) = 0.

For β ∈ C, trace the paths defined by H(x, t, L,K, β) = 0.

Compare start points of first path tracking with end points of

second path tracking. Points which are permuted belong to the

same irreducible factor.

3. Repeat the loop with other values of α and β.
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Linear Traces

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve







y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.
Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
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Validation of Breakup with Linear Trace

Do we have enough witness points on a factor?

• We may not have enough monodromy loops to connect all
witness points on the same irreducible component.

• For a k-dimensional solution component, it suffices to consider
a curve on the component cut out by k − 1 random
hyperplanes. The factorization of the curve tells the

decomposition of the solution component.

• We have enough witness points on the curve if the value at the
linear trace can predict the sum of one coordinate of all points

in the set.
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Numerical Irreducible Decomposition

In computing a numerical irreducible decomposition of a given

polynomial system, we typically run through the following steps:

1. Embed (phc -c) add #random hyperplanes = top dimension,

add slack variables to make the system square

2. Solve (phc -b) solve the system constructed above

3. WitnessGenerate apply a sequence of homotopies to compute

(phc -c) witness point sets on all solution components

4. WitnessClassify filter junk from witness point sets

(phc -f) factor components into irreducible components

Especially step 2 is a computational bottleneck.

We recently discovered and implemented a new algorithm.
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3. Solving Systems Incrementally

• Extrinsic and Intrinsic Deformations
extrinsic : defined by explicit equations

intrinsic : following the actual geometry

• Diagonal Homotopies
→ to intersect pure dimensional solution sets

• Intersecting with Hypersurfaces
adding the polynomial equations one after the other we arrive

at an incremental polynomial system solver.
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Extrinsic Homotopy Deformations

f(x) = 0 has k-dimensional solution components. We cut with k

hyperplanes to find isolated solutions = witness points sets :

ai0 +

n
∑

j=1

aijxj = 0, i = 1, 2, . . . , k, aij ∈ C random

Sample















f(x) + γz = 0 z = slack

ai0(t) +
n
∑

j=1

aij(t)xj = 0 moving

#witness points =
∑

C ⊆ f−1(0)

dim(C) = k

deg(C)

24



'

&

$

%

Embedding with Slack Variables

The cyclic 4-roots system defines 2 quadrics in C4 :
































































x1 + x2 + x3 + x4 + γ1z = 0

x1x2 + x2x3 + x3x4 + x4x1 + γ2z = 0

x1x2x3 + x2x3x4 + x3x4x1+ x4x1x2 + γ3z = 0

x1x2x3x4 − 1 + γ4z = 0

a0 + a1x1 + a2x2 + a3x3 + a4x4 + z = 0

Original system : 4 equations in x1, x2, x3, and x4.

Cut with random hyperplane to find isolated points.

Slack variable z with random γi, i = 1, 2, 3, 4 : square system.

Solve embedded system to find 4 = 2+2 witness points as isolated

solutions with z = 0.
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Intrinsic Homotopy Deformations

f(x) = 0 has k-dimensional solution components. We cut with a

random affine (n− k)-plane to find witness points :

x(λ) = b+
n−k
∑

i=1

λivi ∈ Cn

The vectors b and vi are choosen at random.

Sample f

(

x(λ, t) = b(t) +
n−k
∑

i=1

λivi(t)

)

= 0

Points on the moving (n− k)-plane are determined by n− k

independent variables λi, i = 1, 2, . . . , n− k.
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#independent variables = co-dimension

f(x) = 0 is a system with x ∈ Cn, x lies on an affine (n− k)-plane:

x(λ) = b+
n−k
∑

i=1

λivi ∈ Cn

where λ = (λ1, λ2, . . . , λn−k) contains all independent variables.

Correct with Newton on f(x(λ)) = 0, a system in λ.

Solve

[

∂f

∂λ

]

λ = −f(x(λ)) with
∂fi

∂λj
=

n−k
∑

l=1

∂fi

∂xl

∂xl

∂λj
.

Overdetermined case moved from global to local level!

no slack variables needed...
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Intersecting Hypersurfaces Extrinsicially







f1(x) = 0 x ∈ Cn

L1(x) = 0 n−1 hyperplanes







f2(y) = 0 y ∈ Cn

L2(y) = 0 n−1 hyperplanes

diagonal homotopy extrinsic version









































f1(x) = 0

f2(y) = 0

L1(x) = 0

L2(y) = 0















t+









































f1(x) = 0

f2(y) = 0

x− y = 0

M(y) = 0















(1− t) = 0

At t = 1 : deg(f1)× deg(f2) solutions (x,y) ∈ Cn×n.

At t = 0 : witness points (x = y ∈ Cn) on f−11 (0) ∩ f−12 (0) cut out

by n− 2 hyperplanes M .
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Intersecting Hypersurfaces Intrinsically

Consider a general affine line x(λ) = b+ λv ∈ Cn.

f1(x(λ) = b+ λv)

deg(f1) values for λ

⋂ f2(y(µ) = b+ µv)

deg(f2) values for µ

diagonal

homotopy





f1

f2













x(t)

y(t)







 =





0

0





intrinsic

version

�
�

x(t)

y(t)

�
�

= �
�

b

b

�
�

+ λ �
�

�
�

v

0

�
�

t+ �
�

u1

u1

�
�

(1−t)�
�

+ µ �
�

�
�

0

v

�
�

t+ �
�

u2

u2

�
�

(1−t)�
�

At t = 1 : deg(f1)× deg(f2) solutions (x,y) ∈ Cn×n.

At t = 0 : witness points on x = b+ λu1 + µu2, a general 2-plane

defined by a random point b and 2 random vectors u1 and u2.
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Intersecting with Hypersurfaces

Let f(x) = 0 have k-dimensional solution components described

by witness points on a general (n− k)-dimensional affine plane,

i.e.:

f

(

x(λ) = b+
n−k
∑

i=1

λivi

)

= 0.

Let g(x) = 0 be a hypersurface with witness points on a general

affine line, i.e.:

g(x(µ) = b+ µw) = 0.

Assuming g(x) = 0 properly cuts one degree of freedom from

f−1(0), we want to find witness points on all

(k − 1)-dimensional components of f−1(0) ∩ g−1(0).
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Intrinsic Hypersurface Intersection

The diagonal homotopy for (f, g) on (x,y) ∈ Cn×n starts at




x(1)

y(1)



 =





b

b



+
n−k
∑

i=1

λi





vi

0



+ µ





0

w





and ends at




x(0)

y(0)



 =





b

b



+
n−k
∑

i=1

λi





vi

vi



+ µ





w

w



 .

The diagonal homotopy




f

g













x(t)

y(t)



 =





x(1)

y(1)



 t+





x(0)

y(0)



 (1− t)



 =





0

0





has n− k + 1 independent variables (λ1, λ2, . . . , λn−k, µ).
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Computing Nonsingular Solutions Incrementally

Suppose (f1, f2, . . . , fk) defines the system f(x) = 0, x ∈ Cn,

whose solution set is pure dimensional of multiplicity one for all

k = 1, 2, . . . , N ≤ n, i.e.: we find only nonsingular roots if we

slice the solution set of f(x) = 0 with a generic linear space of

dimension n− k.

Main loop in the solver :

for k = 2, 3, . . . , N − 1 do
use a diagonal homotopy to intersect

(f1, f2, . . . , fk)
−1(0) with fk+1(x) = 0,

to find witness points on all (n− k − 1)-dimensional
solution components.
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Outcomes of Hypersurface Intersections

Let V be an (n− k)-dimensional irreducible component of

(f1, ..., fk)
−1(0) and g−1(0) be an irreducible hypersurface.

Three cases for V ∩ g−1(0):

1. V ⊆ g−1(0)

All witness points of V satisfy g(x) = 0.

2. dim(V ∩ g−1(0)) = k − 1
The diagonal homotopy gives witness points on all

(k − 1)-dimensional components of the intersection.

3. V ∩ g−1(0) = ∅
All paths in the diagonal homotopy diverge.
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4. Test Polynomial Systems

Example 1 a 7-bar mechanism in the plane

Example 2 a spatial Burmester problem

Example 3 the Griffis-Duffy platform

A.J. Sommese, J. Verschelde, and C.W. Wampler: Advances in polynomial

continuation for solving problems in kinematics. In Proc. ASME Design

Engineering Technical Conf. (CDROM), 2002.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical irreducible

decomposition using PHCpack. In Algebra, Geometry, and Software

Systems ed. by M. Joswig and N. Takayama. Springer-Verlag, to appear.
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Ex 1. A Seven-Bar Structure: Solution

A

B,C D

E

F

H

I

Roberts cognate 7-bar moves on a degree-6 curve (coupler curve)

AND . . .
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A

B,C
D

E
F

G

H

I

AND . . . has six isolated solutions

• two at each double point of coupler curve
• here, only 1 of 3 double points is real
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Ex 2. Six Spatial Positions: Solution

curve y

curve x

–1.6
–1.2

–0.8
–0.4

0

–0.3
–0.2

–0.1
0

0.1
0.2

0.3
0.4

0.2

0.4

0.6

0.8

Sphere-point/center-point curves are irreducible, degree 10.

An illustration of Numerical Elimination.
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Witness Points

for the Spatial Burmester Problem

• The input polynomial system consists of five quadrics in six
unknowns (x,y).

• The new incremental solver computes 20 witness points in
7s 181ms on Pentium III 1Ghz Windows 2000 PC.

• Projection onto x or y reduces the degree from 20 to 10.
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Ex 3. Griffis-Duffy Platforms: Solution

Solution components by degree

Husty & Karger SVW

Euler Position Study Position

General Case

20 40 28 40

Legs equal, Plates equal

6 8

4 8 6 8

4 8 6 8

6 12 6 12

2 4 4 4

16 32 28 40
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Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!
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Griffis-Duffy Platforms: an Animation
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Conclusions

• Feasible in practice to decompose the solution set of a
polynomial system by standard machine arithmetic.

multi-precision arithmetic is needed for singular components...

• The incremental solving method with diagonal homotopies
promises to unify solvers for isolated and solvers for

components of solutions.

exploitation of structure in progress...
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