
Parallel Algorithms for a

Numerical Irreducible Decomposition

Jan Verschelde

Department of Math, Stat & CS
University of Illinois at Chicago
Chicago, IL 60607-7045, USA

eMail: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

Joint work with Anton Leykin (UIC).
The Midwest Algebra, Geometry and their Interactions

Conference (MAGIC05)
University of Notre Dame, 8-11 October 2005.



introduction

Problem Statement

Given a pure dimensional solution set f−1(0) in Cn,

find its decomposition into irredudible factors.

Special cases:

• When f is a single equation: “Absolute Factorization”.

• For approximate coefficients, almost always irreducible

→ find factorization of a polynomial close to f .

page 1 of 15



introduction

Related Work

Computer Algebra: polynomial factorization is fundamental.

Symbolic-Numeric Computing: challenge of Erich Kaltofen
(JSC 29, 2000) asks to find a polynomial time algorithm to
factor polynomials with approximate coefficients.

Recent Work: new symbolic-numeric algorithms by

• T. Sasaki, T. Saito, T. Hilano (1992); T. Sasaki (2001)

• A. Galligo, D. Rupprecht (2001); G. Chèze, A. Galligo (2003)

• R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas,

S.M. Watt (2001)

• X.-S. Gao, E. Kaltofen, J. May, Z. Yang, L. Zhi (2004)

Numerical Algebraic Geometry:
A.J. Sommese, J. Verschelde, C.W. Wampler (2001,2002).

page 2 of 15



introduction

Irreducible Factor = Assembly of Platform

page 3 of 15



introduction

Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!

page 4 of 15



introduction

Outline of this Talk

Homotopy methods generate loops around singularities
→ scale very well on parallel computers.

A first parallel implementation has problems...

A new organization of the loops
→ leads to a new and more efficient algorithm.

Computational results: larger problems within reach.

page 5 of 15



monodromy

Generating Loops by Homotopies

WL represents a k-dimensional solution set of f(x) = 0, cut out by
k random hyperplanes L. For k other hyperplanes K, we move WL

to WK , using the homotopy hL,K,α(x, t) = 0, from t = 0 to 1:

hL,K,α(x, t) =


 f(x)

α(1 − t)L(x) + tK(x)


 = 0, α ∈ C.

The constant α is chosen at random, to avoid singularities, as t < 1.

To turn back we generate another random constant β, and use

hK,L,β(x, t) =


 f(x)

β(1 − t)K(x) + tL(x)


 = 0, β ∈ C.

A permutation of points in WL occurs only among points on the
same irreducible component.

page 6 of 15



monodromy

Linear Traces as Stop Criterium

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x + c0.
Sample the cubic at x = x0 and x = x1. The samples are
{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve




y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0

to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.
For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.
Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
If �=, then samples come from irreducible curve of degree > 3.

page 7 of 15



monodromy

Monodromy Breakup certified by Linear Traces

Input: WL, d, N witness set, degree, #loops

Output: P partitioned witness set

0. initialize P with d singletons; done by master node

1. generate two slices L′ and L′′ parallel to L; broadcast data to nodes
2. track d paths for witness set with L′; executed in parallel

3. track d paths for witness set with L′′; executed in parallel

4. for k from 1 to N do
4.1 generate new slices K and a random α; broadcast K and α

4.2 track d paths defined by hL,K,α(x, t) = 0; executed in parallel

4.3 generate a random β; broadcast β to nodes
4.4 track d paths defined by hK,L,β(x, t) = 0; executed in parallel

4.5 compute the permutation and update P; done by master node

4.6 exit when linear trace test certifies P.

page 8 of 15



performance

A Benchmark Example: cyclic 8-roots

The system

f(x) =




fi =
7∑

j=0

i∏
k=1

x(k+j)mod 8 = 0, i = 1, 2, . . . , 7

f8 = x0x1x2x3x4x5x6x7 − 1 = 0

has 1152 isolated solutions and a solution curve of degree 144,
which breaks up into 16 irreducible factors.

There are 8 factors of degree 16, and 8 quadratic factors.

Our equipment consists of one workstation with two dual 2.4Ghz
processors, running Linux, and serving two Rocketcalc clusters: one
with four and an other with eight 2.4Ghz processors. So we have a
total of 14 processors: a master node and 13 slave nodes.

page 9 of 15



performance

Computational Results

• Fluctuations in work loads and influence of number of loops needed:

#L 4 5 6 7 7 7 7 7 8 9

min 6.0 7.8 9.2 10.1 10.3 10.9 10.9 10.7 11.8 12.3

max 9.9 11.5 12.8 15.4 15.1 14.7 14.1 14.5 16.3 16.9

total 11.7 14.9 16.9 19.2 19.3 19.5 19.7 20.3 21.9 23.4

Results of 10 runs on 14 processors. #L = number of loops, min and max

are the minimal and maximal time (in seconds) spent by the slave nodes.

• Speedup:

NP 2 3 4 5 6 7 8 9 10 11 12 13 14

min — 68.7 47.4 31.5 25.8 21.5 20.0 18.0 14.8 12.1 11.7 11.2 10.9

max 144.3 69.2 48.6 33.6 28.0 25.3 22.0 20.1 18.8 17.6 16.2 14.7 14.1

total 150.9 77.1 56.5 41.4 35.7 32.5 29.1 27.3 25.9 22.3 21.7 20.2 19.7

Execution times for number of processors NP, from 2 to 14, using 7 loops.

page 10 of 15



performance

Performance of a First Parallel Implementation

2

150.9

3

77.1

4

56.5

5

41.4

6

35.7

7

32.5

8

29.1

9

27.3

10

25.9

11

22.3

12

21.7

13

20.2

14

19.7

Height of the bars = time expressed in seconds.
Shaded top area = time spent by master node.
Lowest horizontal bar = minimal time spent by slave.

Number of Processors

page 11 of 15



The New Algorithm – Serial Version

P := {{a} | 1 ≤ a ≤ d, {a} is not a component};
Q := {f | f ⊂ {1, 2, . . . , d} is a certified irreducible factor};

construct s witness sets using s random slices;

construct the trace grid, for 2 parallel slices;

Ntot := s × d + 2 × d; Nreg := 0;

The initialization requires (s + 2)d paths

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

P := {{a} | 1 ≤ a ≤ d, {a} is not a component};
Q := {f | f ⊂ {1, 2, . . . , d} is a certified irreducible factor};

construct s witness sets using s random slices;

construct the trace grid, for 2 parallel slices;

Ntot := s × d + 2 × d; Nreg := 0;

�

yes

no

�
On return is a certified factorization,

and path tracking statistics.

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

�
yes

no

Use path tracking statistics to
discriminate against nonproductive slices.

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

�

�

yes

no

Track a path to close a loop.

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q �= p?

�

Nreg := Nreg + 1;

�

�

�

�

no

yes

no

If no permutation occurred,

then we regret the effort.

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q �= p?

�

�
merge p and q:

P := P ∪ {p ∪ q};
P := P \ {p, q};

Nreg := Nreg + 1;

�

�

�

�

no

yes

yes

no

If a permutation occurred,
then p and q are joined.

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q �= p?

�

�
merge p and q:

P := P ∪ {p ∪ q};
P := P \ {p, q};

is p ∪ q irreducible?

Nreg := Nreg + 1;

�

�

�

�
�

no

yes

no

yes

no

If the linear trace test
fails to certify p ∪ q,

then more loops are needed.

page 12 of 15



#P �= 0? � return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q �= p?

�

�
merge p and q:

P := P ∪ {p ∪ q};
P := P \ {p, q};

is p ∪ q irreducible?

P := P \ {p ∪ q};
Q := Q ∪ {p ∪ q};Nreg := Nreg + 1;

�

�

�

�
�

�
no

yes

yes

no

yes

no

found new
irreducible

factor

page 12 of 15



new algorithm

The New Algorithm – Parallel Version

Using a master/slave model:

• Initialization phase involves the distribution of d paths,
for the s new witness sets and trace grid.

Node 0 distributes jobs to path tracking nodes i, i > 0.

• After initialization:

Node 0 keeps looking for available nodes to assign paths.

Other nodes are either busy or ready to start new jobs.

Compared to the first parallel implementation, this algorithm
interleaves the computation of the linear trace by the master with
the distribution of path tracking jobs.

page 13 of 15



Performance on cyclic 8-roots

Five runs using 14 processors (recall 19.7 seconds):

3 new slices 2 new slices

#runs 1 2 3 4 5

initial 8.73 9.01 8.89 6.54 6.98

master 6.06 6.22 6.18 6.67 7.10

min track 5.96 6.16 6.07 6.60 7.02

max track 6.06 6.24 6.23 6.11 7.15

total 14.9 15.4 15.3 13.4 14.2

We report the time used for initialization, the time spent by the
master node, the minimal and maximal time for the nodes spent
tracking paths, and the total time, all expressed in seconds.

page 14 of 15



Conclusions

• The new parallel monodromy breakup algorithm shows an even
distribution of the time spent by the nodes.

• Using fewer slices reduces initialization time at the expense of a
higher running time in main loop.

• Compared to the first parallel implementation, the new
algorithm shows a more predictable and regular performance.

• On larger examples, e.g. factoring a 10-dimensional surface of
degree 256 in C

18, the new algorithm still takes only 80% of the
very best time of the first parallel implementation.

page 15 of 15


