
Speedup and quality up with Ada tasking

Solving polynomial systems faster and better

on multicore computers with PHCpack

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan

jan@math.uic.edu

Ada devroom, FOSDEM 2014, 1-2 February, Brussels, Belgium

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 1 / 20

Outline

1 Problem Statement

accurate numerical computations

motivating example: solving a triangular linear system

cost overhead of double double and quad double arithmetic

2 Solving with Tasking

coarse grain: running a pleasingly parallel computation

fine grain: one Newton step in parallel

multithreaded linear system solving

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 2 / 20

problem statement

We apply numerical methods on problems of growing size ...

faster computers allow us to handle larger problems, but

larger problems lead to more propagation of roundoff.

Is double precision still enough for accurate results? No!

Numerical polynomial system solving applies Newton’s method.

Newton’s method in several variables requires:

evaluation and differentiation of the polynomials; and

solution of a linear system to update the approximation.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 3 / 20

solving polynomial systems with PHCpack

PHCpack is a package for Polynomial Homotopy Continuation.

ACM Transactions on Mathematical Software achived version 1.0

(Ada 83) as Algorithm 795, vol. 25, no. 2, pages 251–276, 1999.

phc -b computes all isolated solutions of a polynomial system.

Version 2.0 was rewritten using concepts of Ada 95

and extended with arbitrary multiprecision arithmetic.

Versions 2.1, 2.2, and 2.3 provided parallel path trackers with MPI

(message passing), deflation methods for isolated singularities, and

tools for positive dimensional solution sets.

Multitasking support since version 2.3.45 (2009-05-15)

with the GNAT GPL 2009 edition of the GNU-Ada compiler,

integrated quad double arithmetic since version 2.3.55 (2010-05-16).

PHCpack is an optional component of Sage.

Current version, since 2.3.84 (2013-09-26) at

https://github.com/janverschelde/PHCpack.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 4 / 20

quad double precision

A quad double is an unevaluated sum of 4 doubles,

improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double

precision floating point arithmetic. In the 15th IEEE Symposium on

Computer Arithmetic, pages 155–162. IEEE, 2001. Software at

http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

Predictable overhead: working with double double is of the same

cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

M. Lu, B. He, and Q. Luo: Supporting extended precision on

graphics processors. In the Proceedings of the Sixth International

Workshop on Data Management on New Hardware (DaMoN 2010),

pages 19–26, 2010.

Software at http://code.google.com/p/gpuprec/.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 5 / 20

personal supercomputers

12-core computer with NVDIA Tesla C2050:

HP Z800 workstation running Red Hat Enterprise Linux 6.4

The CPU is an Intel Xeon X5690 at 3.47 Ghz.

There are two such 6-core CPUs: 12 cores.

The processor clock of the NVIDIA Tesla C2050 Computing

Processor runs at 1147 Mhz. The graphics card has 14

multiprocessors, each with 32 cores, for a total of 448 cores.

16-core computer with NVIDIA Tesla K20C:

Microway RHEL workstation with Intel Xeon E5-2670 at 2.6 Ghz.

There are two 8-core processors: 16 cores.

The NVIDIA Tesla K20C has 2,496 cores (13 × 192) at a clock

speed of 706 Mhz. The peak double precision performance of

1.17 teraflops is twice of that of the C2050.

The focus today is on multicore shared memory programming.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 6 / 20

motivation: solving a trangular linear system

Ax = b :















a1,1 a1,2 · · · a1,n−1 a1,n

0 a2,2 · · · a2,n−1 a2,n
...

...
. . .

...
...

0 0 · · · an−1,n−1 an−1,n

0 0 · · · 0 an,n





























x1

x2
...

xn−1

xn















=















b1

b2
...

bn−1

bn















x = A−1b :



























xn = bn/an,n

xn−1 = (bn−1 − an−1,nxn)/an−1,n−1
...

x2 = (b2 − a2,3x3 − · · · − a2,n−1xn−1 − a2,nxn)/a2,2

x1 = (b1 − a1,2x2 − · · · − a1,n−1xn−1 − a1,nxn)/a1,1

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 7 / 20

back substitution in double precision arithmetic

Matrix A with random elements: |ai ,j | ≤ 1.

Exact solution: x = (1,1, . . . ,1), with b computed as b = Ax.

dim first component error

8 1.00000000000000E+00 1.110E-16

16 1.00000000000006E+00 5.795E-14

24 1.00000000000650E+00 6.501E-12

32 9.99999513489745E-01 4.865E-07

40 9.99999112010784E-01 8.880E-07

48 1.00000025727134E+00 2.573E-07

56 1.31462587863753E+00 3.146E-01

64 2.14032668329910E+00 1.140E+00

72 -8.30854878370287E+06 8.309E+06

80 1.57365774064379E+02 1.564E+02

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 8 / 20

back substitution in double double arithmetic

Matrix A with random elements: |ai ,j | ≤ 1.

Exact solution: x = (1,1, . . . ,1), with b computed as b = Ax.

dim first component error

80 1.00000000000000000000000000000000E+00 0.000E+00

160 1.00000000000000000000000000000000E+00 0.000E+00

240 1.00000000000000000000000000000000E+00 0.000E+00

320 1.00000000000000000000000000000000E+00 0.000E+00

400 1.00000000000000000000000000000000E+00 0.000E+00

480 1.00000000000000000000000000000000E+00 0.000E+00

560 1.00000000000000000000000000000000E+00 0.000E+00

640 1.00000000000000000000000000000000E+00 0.000E+00

720 1.00000000000000000000000000000000E+00 0.000E+00

800 1.00000000000000000000000000000000E+00 0.000E+00

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 9 / 20

numerical interpretation

With double precision, results became unreliable already at n = 50.

In double double arithmetic, accuracy was maintained for large n.

Numerical conditioning measures how sensitive the problem is to

numerical representation and roundoff errors.

A condition number gives a magnification factor for numerical errors.

Example (in Matrix Computations by Golub & Van Loan): κ∞(A) = n2n−1 for

an upper triangular A = (ai,j) with ai,i = 1, ai,j = 0 if i > j, ai,j = −1 if i < j.

Solving upper triangular systems is needed in Newton’s method

after a LU or QR factorization on the matrix of partial derivatives

and for general polynomial systems we cannot make assumptions

on the shape or structure of the matrix.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 10 / 20

cost overhead of arithmetic

Solve 100-by-100 system 1000 times with LU factorization:

type of arithmetic user CPU seconds

double real 1s 136ms

double complex 10s 603ms

double double real 10s 507ms

double double complex 1m 19s 908ms

quad double real 1m 30s 628ms

quad double complex 11m 16s 634ms

Fully optimized Ada code on one core of 3.47 Ghz Intel Xeon.

Overhead of complex arithmetic: 10.603/1.136 = 9.334,

79.908/10.507 = 7.605, 676.634/90.628 = 7.466.

Overhead of double double complex: 79.908/10.603 = 7.536.

Overhead of quad double complex: 676.634/79.908 = 8.467.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 11 / 20

speedup and quality up
Selim G. Akl, Journal of Supercomputing, 29, 89-111, 2004

How much faster if we can use p cores?

Let Tp be the time on p cores, then speedup =
T1

Tp
→ p,

keeping the working precision fixed.

How much better if we can use p cores? Keeping the time fixed,

let Qp be the quality on p cores, then quality up =
Qp

Q1
→ p.

Confusing working precision with accuracy (okay if well conditioned):

quality up =
Qp

Q1
=

decimal places with p cores

decimal places with 1 core

Assuming constant speedup and Qp/Q1 is linear in p,

then we can rescale when computing time is not constant.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 12 / 20

solving polynomial systems by homotopy continuation

On input is a polynomial system f (x) = 0.

A homotopy is a family of systems:

h(x, t) = (1 − t)g(x) + t f (x) = 0.

At t = 1, we have the system f (x) = 0 we want to solve.

At t = 0, we have a good system g(x) = 0:

solutions are known or easier to solve; and

all solutions of g(x) = 0 are regular.

Tracking all solution paths is pleasingly parallel,

although not every path requires the same amount of work.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 13 / 20

starting worker tasks
procedure Workers is instantiated with a Job procedure,

executing code based on the id number.

procedure Workers (n : in natural) is

task type Worker (id,n : natural);

task body Worker is

begin

Job(id,n);

end Worker;

procedure Launch_Workers (i,n : in natural) is

w : Worker(i,n);

begin

if i < n

then Launch_Workers(i+1,n);

end if;

end Launch_Workers;

begin

Launch_Workers(1,n);

end Workers;

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 14 / 20

managing job queues

On input is a list of start solutions.

The job queue is then the corresponding list of pointers:

each job requires the application of predictor-corrector methods

starting at the known solutions and ending at the desired solutions.

Path tracking on a list of solutions is a pleasingly parallel computation:

no communication overhead during the path tracking.

Management of the job queue:

1 an idle worker requests access to the next pointer in the queue;

2 once given access, the worker takes the job and becomes busy;

3 at the end of path, pointer to the solution of the target system.

Dynamic load balancing works well in this way.

Source of inspiration: Gem #81: GNAT Semaphores, at

http://www.adacore.com/adaanswers/gems/gem-81

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 15 / 20

running a pleasingly parallel computation

In the file cyclic7 is a benchmark polynomial system.

We measure the wall clock time:

$ time phc -b cyclic7 /tmp/cyclic7.phc_t1

real 0m15.880s

user 0m15.744s

sys 0m0.007s

$ time phc -b -t12 cyclic7 /tmp/cyclic7.phc_t12

real 0m1.495s

user 0m13.786s

sys 0m0.010s

[jan@dezon Demo]$

On 12 cores, the speedup is 15.880/1.495 = 10.622.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 16 / 20

one Newton step in parallel

Often, we have only a couple of difficult solution paths.

The computational work in one Newton steps is in
1 the evaluation and differentiation of all polynomials:

◮ arrange as multiplication of coefficient matrix
with the evaluated vector of all monomials; or

◮ multiply common factors (computed with a table of power products)

with products of variables (the Speelpenning product),
applying reverse mode of algorithmic differentiation

2 the solving of a linear system:
◮ LU following the classical LINPACK routines; or
◮ QR with the modified Gram-Schmidt method.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 17 / 20

multithreaded LU factorization

Routines in PHCpack to solve linear systems are based

on ZGEFA and ZGESL of LINPACK.

The multithreaded version of LU factorization does pivoting,

synchronizing jobs with busy flags

and a column counter updated by first thread.

For good computational results for our first multithreaded

implementation, the dimension needs to be around 80.

Because LU is O(n3), backsubstitution is O(n2), and n ≫ p,

multithreaded LU still dominates the total cost.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 18 / 20

speedup and quality up for multithreaded LU

1000 times LU factorization of 80-by-80 matrix (8-core MacPro):

double double complex

#tasks real user sys speedup

1 1m 8.173s 1m 8.074s 0.131s 1

2 0m 36.712s 1m 13.061s 0.249s 1.857

4 0m 21.565s 1m 25.035s 0.455s 3.161

8 0m 20.986s 1m 42.156s 2.270s 3.248

quad double complex

#tasks real user sys speedup

1 10m 12.216s 10m 11.900s 0.311s 1

2 5m 12.753s 10m 24.774s 0.477s 1.958

4 2m 42.653s 10m 48.795s 0.699s 3.764

8 1m 33.234s 12m 17.653s 1.930s 6.566

Acceptable speedups with quad doubles. Quality up: with 8 cores,

less than twice the time to double accuracy.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 19 / 20

the quality up factor

Compare 68.173s (1 core in dd) with 93.234s (8 cores in qd).

With 8 cores, less than twice the time to double accuracy.

The speedup is close to optimal: how many cores would we need to

reduce the calculation with quad doubles to 68.173s?

93.234

68.173
× 8 = 10.941 ⇒ 11 cores

Denote y(p) = Qp/Q1 and assume y(p) is linear in p.

We have y(1) = 1 and y(11) = 2, so we interpolate:

y(p)− y(1) =
y(11)− y(1)

11 − 1
(p − 1).

and the quality up factor is y(8) = 1 +
7

10
= 1.7.

Jan Verschelde (UIC) speedup and quality up with Ada tasking FOSDEM 2014, 1-2 February 20 / 20

	Problem Statement
	accurate numerical computations
	motivating example: solving a triangular linear system
	cost overhead of double double and quad double arithmetic

	Solving with Tasking
	coarse grain: running a pleasingly parallel computation
	fine grain: one Newton step in parallel
	multithreaded linear system solving

