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Outline

O Assembling a Seven-Bar Mechanism
@ an application from mechanism design
@ solving a multilinear system
@ numerical representation of a space curve

@ Local Intrinsic Coordinates
@ conditioning of generic points
@ sampling in intrinsic coordinates
@ improving the numerical conditioning

e A Rescaling Algorithm and the Numerical Stability

@ sampling in local intrinsic coordinates
@ computational results on benchmark systems
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Assembling a Seven-Bar Mechanism
an application
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D
One possible assembly

@ Generally, 18 solutions. (This example, 8 real, 10 complex.)
@ Intersection of two four-bar coupler curves.
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A Moving Seven-Bar Mechanism

Roberts cognate 7-bar moves on a degree-6 curve (coupler curve)
AND ...
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AND ... has six isolated solutions

@ two at each double point of coupler
curve

@ here, only 1 of 3 double points is real
=} = = E DA



A Multilinear System

t1xT1 - 1; t2+T2 - 1; t3*T3 - 1;
t4xT4 - 1; t5+T5 - 1; t6*T6 - 1;

0.71035834160605+t1 + 0.46+t2 - 0.41+t3
+ 0.24076130055512 + 1.07248215701824+i ;

(-0.11+0.49+%i)*t2 + 0.41xt3
- 0.50219518117959%t4 + 0. 41xt5;

0.50219518117959+t4 + (-0.09804347826087
+ 0.43673913043478+i)*t5 - 0.77551855666366+t6 - 1.2

0. 71035834160605*T1 + 0.46+«T2 - 0.41+T3
+ 0.24076130055512 - 1.07248215701824+i ;

(-0.11-0.49*i)*T2 + 0.41+T3
- 0.50219518117959*T4 + 0. 41xT5;

0.50219518117959+T4 + (-0.09804347826087
- 0.43673913043478+i)*T5 - 0.77551855666366*T6 - 1.2;
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What does solving mean?

On input is a system of 12 equations in 12 unknows.
We expect a curve of solutions ...

... because there is an assembly that moves.
We also have rigid assembilies: isolated solutions.

Solutions to this system:
© acurve of degree 6; and
© 6 isolated solutions.
A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical

decomposition of the solution sets of polynomial systems into
irreducible components. SIAM J. Numer. Anal., 38(6):2022—-2046, 2001.

A.J. Sommese and C.W. Wampler. The Numerical solution of systems of
polynomials arising in engineering and science. World Scientific, 2005.
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Representing a Space Curve

Consider the twisted cubic:

y —x2=0
z-x3=0

Important attributes are dimension and degree:
@ dimension: cut with one random plane,
@ degree: #points on the curve and in the plane.
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Witness Set for a Space Curve

Consider the twisted cubic:

, y—-x2=0
{y—x =0 z-x3=0
z-x3=0 Co+C1X + Cpy + €32 =0

Intersect with a random plane ¢cg + ¢1X + Coy + €32 =0
— find three generic points on the curve.
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Generic Points on Algebraic Sets

A polynomial system f(x) = 0 defines an algebraic set f ~1(0) c C".

We assume
@ 11(0) is pure dimensional, k is codimension; and moreover
© f(x) = 0is a complete intersection, k = #polynomials in f.

For example, consider all adjacent minors of a general 2-by-3 matrix:

[ X11 X12 X13 ] F(x) = { X11X22 — X21X12 = 0
X21 X2 X3 X12X23 — X22X13 = 0
n=6, k=2 dim(f10))=n-k =4

To compute deg(f ~%(0)), add n — k general linear equations L(x) = 0
to f(x) = 0 and solve {f(x) = 0,L(x) = 0}.

— 4 generic points for all adjacent minors of a general 2-by-3 matrix.
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Intrinsic Coordinates save Work

Generic points for all adjacent minors of a general 2-by-3 matrix satisfy

(for random coefficients c¢;; € C): .
X11X22 — X21X12 = 0

X12X23 — X22X13 = 0
C10 + C11X11 + C12X12 + C13X13 + C14X21 + C15X22 + C1X23 = 0
C20 + C21X11 + C22X12 + C23X13 + C24X21 + Co5X22 + CoeX23 = 0
C30 + C31X11 + C32X12 + C33X13 + C34X21 + C35X22 + C3eXp3 = 0
C40 + C41X11 + C42X12 + C43X13 + Ca4X21 + Ca5X22 + CaeX23 = 0

L=%(0) is a 2-plane in C®, spanned by

X [ by | [ Va1 | [ Va1 | i '
X11 b1 Vll v21 b is offset point
12 2 12 22 V1,V orthonormal basis
X13 . b3 Vi3 V23
Xo1 | | ba T Vig e Va4 intrinsi
(&1, &2) intrinsic
X22 bs Vis Va5 coordinates
| X23 | _be_ L Vi | | Vo6
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A Commutative Diagram

@ f(x) = 0 a system of k polynomials in n variables x,
@ L(x) = 0 a system of n — k general linear equations in x,
@ b € C"is offset point, V = [v1 vp -+ vg], V¥V = Ii.

Intrinsic coordinates & = (£1,&2, ..., &) for x:
X=Db+&V1+8&Va+ - +&Vk =b +VE.
Use f(x = b + V&) = 0 to compute generic points:

IAxX]| k. AL

lL Ke )T( = Ke T
by K IIHAgé"‘H < K Laevl

We observe worsening of the numerical conditioning: K, > Kg.
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Sampling in Intrinsic Coordinates

Represent L via (b, V) and use intrinsic coordinates & € CK.

Moving from (b, V) to (c,W), as t goes from O to 1, homotopy:
i X= (1-t)b+tc + (1-t)V +tw) £ 0
moving offset point moving basis vectors -

Track paths &(t) via predictor-corrector methods.

Binomial expansion destroys sparse monomial structure of f.
For example, evaluate X;1x5? at x; = by + &vq and x; = by + &Vsp!

(Z < ail ) bil(ﬁlVl)al_i> (Z < 8}2 >bjz(§2V2)a2j) :
i=0 =0
In general: f(b + V(£ + Ag)) = f(b + V&) + Af, with very large ||Af]|.
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Local Intrinsic Coordinates

What if we could keep ||| small?

(by + &v1)™ (bp 4 &V2)®
_ (bj‘l +agbd vy + O(gf)) (bgz +ab® v, + 0(55))
= b*b3? + a;b b2 vy + @bty v, + O(E2, 6165, €3)
Now we have: f(b +V¢) = f(b) + Af,
where ||Af|| is O(||VE&]|) = O(||€]]) as V is orthonormal basis.

Use extrinsic coordinates of generic point as offset point for k-plane:
for d = deg(f~1(0)) and d generic points {z1,21,...,24}:

x=2z,+VE (=1,2,...,d.

The local intrinsic coordinates are defined by ({z1,2;,...,24},V).
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Improved Numerical Conditioning

Condition number Kg of zero z of F(x) = { f(X§

F'(z) Az = —f(z), Kg = k(A),
=A
where x(A) is the condition number of the Jacobian matrix A of F at z.

In local intrinsic coordinates, x = z + V&:

f'(€) AE = (&), Ky = k(B),
vy

where x(A) is the condition number of the Jacobian matrix B of f at £
and K is the condition number for the local intrinsic coordinates.

E=0ox=zadf'cF' = K, <Kg
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Sampling in Local Intrinsic Coordinates

Generic points {z;,2;,...,2q} are offset points for k-plane L
with directions in the orthonormal matrix V.

Moving from (z,,V) to (b, W), as t goes from 0 to 1, homotopy:

fx=1-t)z,+th+W¢g)=0
— only the offset point moves!

Instead of moving to b, let ¢ be the orthogonal projection of z,
onto the k-plane L.

For some step size h, consider:
f(x=2z,+h(c—2) +W¢g)=0

and apply Newton’s method to find the correction AE.
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Schematic of the new Sampling Algorithm

one predictor-corrector step

Yun Guan and Jan Verschelde (UIC) Multilinear Systems ILAS 2010 18/24



pseudocode for one predictor-corrector step

Input: b € C", W = [wy Wy --- wy] € CK, W*W = |,
ze(C",f(z)=0,K(z)=0,h>0,¢>0,somelL.

Output: Z, f(Z) = 0: Z closer to L.

k
vi=z—b;  vi=v-) Wivwi V= v/l
i=1

z:=z+hv, Z:=z;, ¢&:=0;
while ||f(Z + W¢)|| > e do

AE =F(Z+WE)/f(Z+WE);
£ =6+ AL
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Numerical Stability

For some step size h, we evaluate
f(x =z,4+h(c —zp)) =f(z;) + O(h) = O(h).
If step size h is too large, then Newton is unlikely to converge.
If step size h is too large, then f(x =z, + h(c — z;)) > h.
If f(x = z; + h(c — z¢)) > h, then reduce h immediately.

Do not wait for (costly) Newton corrector to fail.

We can control size of residual ||f(¢)|| to be always O(h).
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Implementation and Benchmark Systems

Available since version 2.3.53 of PHCpack

Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math. Softw., 25(2):251-276, 1999.
http://ww. mat h. ui c. edu/ ~j an/ downl oad. ht m

Three classes, families of systems:

© all adjacent minors of a general 2-by-n matrix, n = 3,4,...,13
@ cyclic n-roots, n = 4, 8,9 (an academic benchmark)
© Griffis-Duffy platforms and other systems from mechanical design

Computational experimental setup:
@ given one set of generic points, generate another random k-plane
@ move the given set of generic points to the new random k-plane
@ check results for accuracy, #predictor-corrector steps, timings
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Architecturally Singular Platforms Move

M. Griffis and J. Duffy: Method and apparatus for controlling
geometrically simple parallel mechanisms with distinctive connections.
US Patent 5,179,525, 1993.

end plate, the platform
is connected by legs to

a stationary base

@ Base and endplate are equilateral triangles.
@ Legs connect vertices to midpoints.
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Computational Results

Characteristics of three families of polynomial systems:

\ polynomial system | n|n-k]| d |
1 Griffis-Duffy platform 8 1 40
2 cyclic 8-roots system 8 1 144
3 all adjacent minors of 2-by-11 matrix || 22 12 1,024

n: number of variables, k: codimension, d: degree

Sampling in global intrinsic/local intrinsic coordinates:

| system | #iterations | timings |
1 207/164 | 550/535 usec
2 319/174 5.3/3.2 sec
3 285/219 | 44.6/40.3 sec

Done on a Mac OS X 3.2 Ghz Intel Xeon, using 1 core.
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Conclusions

Advantages of using local intrinsic coordinates:

@ only offset point moves during sampling
@ keep sparse structure of the polynomials
@ control step size by evaluation

Applications to numerical algebraic geometry:
@ implicitization via interpolation
@ monodromy breakup algorithm
@ diagonal homotopies to intersect solution sets
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