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numerical algebraic geometry
Introduced in 1995 as a pun on numerical linear algebra.
In numerical algebraic geometry, one applies methods of numerical
analysis to solve problems in computational algebraic geometry.

Benefits of numerical analysis:
classical field in computer science,
computers are still oriented towards floating-point arithmetic,
widely accepted practice in scientific computing.

To use numerical analysis, one must know its problems:
representation errors in the input: 1/10 6= 0.1,
roundoff errors propagate, especially for larger problems,
ill-conditioned problems need reformulating (computer algebra).

For computational algebraic geometry:
numerical methods work best for complex analysis,
not so good if exact answers are required.
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cloud computing

Three disruptive trends in computational science:
1 Increased use of framework scripting languages such as Python.
2 Web interfaces, remote execution and data curation.
3 Grapics Processing Units (GPUs) accelerate computations

at a low cost, enabling teraflops speeds.

In solving a problem computationally, we then ask:
Reproducible? If you did it, can you do it again?
Accessible? If you can do it, can I do it too?
Scalable? Do I have to wait long?
. . .

Our CASC 2015 paper (with Nathan Bliss, Jeff Sommars, and
Xiangcheng Yu) presented a dedicated interface to a numerical solver.
For this tutorial, we run phcpy in SageMath, with jupyterhub.
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jupyter and jupyterhub
Jupyter (Julia+Python+R) is an open source web application

to create and share documents that contain live code, equations,
visualizations, and explantory text.
Its uses are in data cleaning and transformation, numerical
simulation, statistical modeling, machine learning, etc.

IPython is an earlier notebook system, started in late 2001,
by Fernando Perez.

JupyterHub is a multi-user Hub which spawns, manages and proxies
multiple instances of the single-user Jupyter notebook server.
Three subsystems make up JupyterHub:

1 a multi-user Hub, tornado process
2 a configurable http proxy, node-http-proxy
3 multiple single-user Jupyter notebook servers,

Python/IPython/tornado.
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SageMath and python
lead developer: William Stein

SAGE: Software for Algebra and Geometry Experimentation,
started in early 2005, now known as SageMath.

SageMath is free and open source mathematical software
its mission is to create a viable alternative to the big M’s,
builds on top of many free open source packages,
has a large community of developers and users,
its scripting language is based on Python,
in the cloud: CoCalc and SageMathCell.

SageMath has its own notebook interface,
but its provides a kernel for the Jupyter notebook.
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PHCpack and phcpy
PHCpack is a free and open source software for Polynomial Homotopy
Continuation to solve polynomial systems.
ACM TOMS archived version 1.0 as Algorithm 795 in 1999.

phc -b computes all isolated solutions of a polynomial system.
phc -c computes all positive dimensional solution sets of a
system in a numerical irreducible decomposition.

External software packages integrated in PHCpack:
Fast mixed volume computation by MixedVol of Gao, Li, and Wu,
Algorithm 846 of ACM TOMS, vol. 31, pages 555–560, 2005.
Double double and quad double arithmetic with the QD Library of
Hida, Li, and Bailey published in the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001.

phcpy is a Python package which gives the Python programmer
access to all functionality of PHCpack (EuroSciPy 2013 poster).
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sign up and login, at www.phcpack.org
www.phcpack.org redirects to https://pascal.math.uic.edu
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code snippets for phcpy
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solving polynomial systems numerically

What does numerically solving a polynomial system mean?
The input data may be given with limited accuracy.
The output is approximate.

A polynomial in several variables consist of
exact data: exponents span its Newton polytope; and
approximate data: coefficients, parameter values.

Based on the exact data (the exponents) we compute an upper bound
on the number of solutions.

At the end of the numerical computations, we verify whether the
number of solutions matches the a prior computed upper bound.
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parameter continuation schematic in C
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polynomial homotopy continuation

f(x) = 0 is a polynomial system we want to solve,
g(x) = 0 is a start system (g is similar to f) with known solutions.

A homotopy h(x, t) = γ(1− t)g(x) + t f(x) = 0, t ∈ [0,1], γ ∈ C,
to solve f(x) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Numerical continuation methods track the paths x(t), from t = 0 to 1.

Newton’s method is the most computationally intensive stage:
1 Evaluation and differentiation of all polynomials in the system.
2 Solve a linear system for the update to the approximate solution.

Bootstrapping to solve a start system g(x) = 0:
Random coefficients of g imply that all solutions are regular.
Polyhedral homotopies deform g to 2-nomial systems.
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the gamma trick

A homotopy h(x, t) = γ(1− t)g(x) + t f(x) = 0 deforms the
polynomials in the start system g(x) = 0 to the polynomials in the
system f(x) = 0 that has to be solved, as t goes from zero to one.

The constant γ ∈ C is generated at random.

1 For t = 0, h(x,0) = g(x) = 0 has only regular solutions.
2 The number of solutions of g(x) = 0 equals the upper bound,

is maximal for all systems in the homotopy h(x, t) = 0.

The main theorem in elimination theory states that, in projective space,
the projection of an algebraic set is again an algebraic set.

Consider the discriminant variety of h(x, t) = 0, eliminate x.
After elimination, the polynomial p(t) = 0 has its roots where the
solutions of h(x, t) = 0 are singular. Because p(0) 6= 0, p 6≡ 0 and
there are only finitely many singularities in the complex plane.
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optimal homotopies

Exploiting the structure correctly is critical for the performance of a
homotopy. We say that a homotopy is optimal if every solution path
converges to a solution of a generic instance of the problem.

We have optimal homotopies for three classes of systems:

1 Linear-product start systems in linear homotopies.
Given a polynomial in several variables, deform the polynomial to
a product of linear factors.

2 Polyhedral homotopies for sparse polynomial systems.
The sparsest kind of systems have two monomials with nonzero
coefficient in every equation.

3 Pieri homotopies and Littlewood-Richardson homotopies for
Schubert problems in enumerative geometry.
Given four lines in three space, compute all lines which meet the
four given lines in a point.
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Newton polygons

Consider the system

f(x) =

{
c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x2
1 x2

2 + c2,(1,0)x1 + c2,(0,1)x2 = 0.

The coefficients c(i,j) are nonzero.

The polynomials in f have support sets A1 and A2:

A1 = {(1,1), (1,0), (0,1), (0,0)}, A2 = {(2,2), (1,0), (0,1)}.

The convex hull of the supports span the Newton polygons of f:

P1 = conv(A1) P2 = conv(A2)t
(0,0)

t(0,1) t(1,1)t
(1,0)

P1 t
(1,0)

t(0,1)

t(2,2)
�
�
�
�

@
@
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�
�

P2
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Polyhedral Root Counting

fi(x) =
∑
a∈Ai

ciaxa

cia ∈ C∗ = C \ {0}
f = (f1, f2, . . . , fn)

Pi = conv(Ai)
Newton polytope
P = (P1,P2, . . . ,Pn)

L(f) root count in (C∗)n V (P) mixed volume
L(f) = L(f2, f1, . . . , fn) V (P2,P1, . . . ,Pn) = V (P)

L(f) = L(f1xa, . . . , fn) V (P1 + a, . . . ,Pn) = V (P)

L(f) ≤ L(f1 + xa, . . . , fn) V (conv(P1 + a), . . . ,Pn) ≥ V (P)

L(f) = L(f1(xUa), . . . , fn(xUa)) V (UP1, . . . ,UPn) = V (P)

L(f11f12, . . . , fn) V (P11 + P12, . . . ,Pn)
= L(f11, . . . , fn) + L(f12, . . . , fn) = V (P11, . . . ,Pn) + V (P12, . . . ,Pn)

exploit sparsity L(f) = V (P) 1st theorem of Bernshteı̌n
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mixed volumes

Theorem (Minkowski)
Let P1, P2, . . ., Pn be polytopes in Rn. For a corresponding sequence
of real numbers λ1, λ2, . . ., λn, the volume of λ1P1 + λ2P2 + · · ·+ λnPn
is a homogeneous polynomial in λ1, λ2, . . ., λn of degree n. In
particular:

vol

(∑
i=1

λiPi

)
=

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

λi1λi2 · · ·λinV (Pi1 ,Pi2 , . . . ,Pin ).

The coefficient V (Pi1 ,Pi2 , . . . ,Pin ) is the mixed volume of the tuple
(Pi1 ,Pi2 , . . . ,Pin ).
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an example of mixing areas in a polytope
Consider A1 = {(3,1), (1,2), (0,0)} and A2 = {(4,0), (1,1), (0,0)}.
The Cayley polytope of A1 and A2 is the convex hull of

{(3,1,0), (1,2,0), (0,0,0)︸ ︷︷ ︸
A1×{0}

, (4,0,1), (1,1,1), (0,0,1)︸ ︷︷ ︸
A2×{1}

}.

(3,1,0) (1,2,0)

(0,0,0)

(4,0,1)

(1,2,0)

(4,0,1) (1,1,1)

(0,0,1)

(1,2,0)

(0,0,0)

(4,0,1)

(0,0,1)

The middle simplex is mixed, other simplices are unmixed.
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Initial Forms

An initial form of a polynomial consists of those terms of the
polynomial supported on a face of its Newton polytope.
We denote the inner product of two vectors by 〈·, ·〉.

Definition (Initial Form)

Let v be a direction vector. Consider f =
∑
a∈A

caxa.

The initial form of f in the direction v is

inv(f ) =
∑

a ∈ A
〈a,v〉 = m

caxa,

where m = min{ 〈a,v〉 | a ∈ A }.
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Bernshteı̌n’s Second Theorem 1975

Theorem (Bernshteı̌n Theorem B 1975)
Consider f (x) = 0, f = (f1, f2, . . . , fn), x = (x1, x2, . . . , xn).
Denote by P the tuple of Newton polytopes of f and C∗ = C \ {0}.
If for all nonzero v: inv(f)(x) = 0 has no solutions in (C∗)n,
then f(x) = 0 has exactly as many isolated solutions in (C∗)n

as the mixed volume of P.

The second theorem helps to prove the first theorem,
using a homotopy deformation argument.
Directions of diverging paths coincide with the normals v which
define the inv(f) and are computed by polyhedral end games.
The apriori computation of all normals which lead to an initial form
system which may have solutions gives the tropical prevariety.

Jan Verschelde (UIC) Numerical Algebraic Geometry in the Cloud 1 CASC 2017, 18 September 24 / 33



polytopes in general position

The system

f(x) =

{
c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x2
1 x2

2 + c2,(1,0)x1 + c2,(0,1)x2 = 0.

has Newton polygons:

t
(0,0)

t(0,1) t(1,1)t
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P2

∀v 6= 0 : #invA1 + #invA2 ≤ 3⇒ V (P1,P2) = 4 is always exact,

for all nonzero coefficients of f, because ≥ 4 monomials are needed
for invf(x) = 0 to have all its roots in (C∗)2.
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polyhedral homotopies

We first solve g(x) = 0 via polyhedral homotopies.

To the supports of g we apply a lifting function ω = (ω1, ω2, . . . , ωn),
ωi : Ai → Z : a 7→ ωi(a).

This leads to the system ĝ(x, t) with equations

ĝi(x, t) =
∑
a∈Ai

c̄iaxatωi (a), c̄ia ∈ C∗,

where the coefficients c̄ia are random complex numbers.

To solve ĝ(x, t) = 0, we look for inner normals v = (u,1) for which the
corresponding initial form system invĝ(x, t) = 0 has a solution in (C∗)n.
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changing coordinates
Changing coordinates xj = yj tvj , j = 1,2, . . . ,n, then

ĝi(y, t) =
∑
a∈Ai

c̄ia (y1tv1y2tv2 · · · yntvn )
a tωi (a)

=
∑
a∈Ai

c̄iayatv1a1+v2a2+···+vnan+ωi (a)

=
∑
a∈Ai

c̄iayat〈a,u〉+ωi (a).

As v determines the coordinates change, denote
ĝv(y, t) = ĝi(xj = yj tvj ), and mi = min

â∈Ai

〈a,v〉, so: monomials of ĝv with

lowest exponent mi belong to invĝv.

Thus (t−mi ĝv,i)(y,0) = inv(t−mi ĝv,i)(y).
Initial forms of ĝ(x, t) are start systems.
The v are the leading powers of Puiseux series.
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a totem pole of homotopies

Coefficient-Parameter

Mixed Volume

Linear Products

Multihomogeneous

Total Degree

⋃
⋃
⋃
⋃

easier
start

system

?

more efficient
(fewer paths)

6

Jan Verschelde (UIC) Numerical Algebraic Geometry in the Cloud 1 CASC 2017, 18 September 29 / 33



Numerical Algebraic Geometry in the Cloud 1

1 introduction
numerical algebraic geometry
jupyterhub, SageMath, and phcpy

2 polynomial homotopy continuation
solving polynomial systems numerically
polyhedral root counts
polyhedral homotopies

3 tutorial
sign up and login
demonstration

Jan Verschelde (UIC) Numerical Algebraic Geometry in the Cloud 1 CASC 2017, 18 September 30 / 33



sign up and login, at www.phcpack.org

The sign up procedure requires a functional email address.

Two steps in obtaining an account:
1 Visit www.phcpack.org and fill out a form.
www.phcpack.org redirects to
https://pascal.math.uic.edu.

2 Click on the link sent in the email to your email address.

Two kernels offer phcpy, do import phcpy in both:
1 python 2 (the code snippets work for version 2 of python).
2 SageMath uses python 2 as the scripting language.

Select the kernel from the new menu in the upper right.
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demonstration
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