Numerical Algebraic Geometry in the Cloud 2

Jan Verschelde
joint work with Nathan Bliss, Jasmine Otto, and Jeff Sommars

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

www.phcpack.org
or https://pascal.math.uic.edu

Computer Algebra in Scientific Computing (CASC) 2017
18 September 2017

supported in part by NSF ACI 1440534
Outline

1 introduction
 - numerical algebraic geometry
 - in the cloud

2 numerical irreducible decomposition
 - an illustrative example
 - witness sets, cascades, and membership test
 - factoring with linear traces and monodromy
 - a general solve command

3 tutorial
 - sign up and login
 - demonstration
introduction
- numerical algebraic geometry
- in the cloud

numerical irreducible decomposition
- an illustrative example
- witness sets, cascades, and membership test
- factoring with linear traces and monodromy
- a general solve command

tutorial
- sign up and login
- demonstration
numerical algebraic geometry

Introduced in 1995 as a pun on numerical linear algebra.

In numerical algebraic geometry, we apply homotopy continuation to compute positive dimensional solutions of polynomial systems.

Four homotopies compute a numerical irreducible decomposition:

1. Cascade homotopies compute generic points on all solution components, over all dimensions.
2. A homotopy membership test decides whether a given point belongs to a component of the solution set.
3. Monodromy loops factor pure dimensional solution sets into irreducible components.
4. A diagonal homotopy intersects solution sets.

The data structure to represent a solution set is a witness set:

1. a polynomial system augmented with random linear equations;
2. solutions of the augmented system are generic points.
Numerical Algebraic Geometry in the Cloud 2

1 introduction
- numerical algebraic geometry
- in the cloud

2 numerical irreducible decomposition
- an illustrative example
- witness sets, cascades, and membership test
- factoring with linear traces and monodromy
- a general solve command

3 tutorial
- sign up and login
- demonstration
www.phcpack.org provides access to a Jupyter notebook (alternative site: https://pascal.math.uic.edu) with a SageMath 8.0 kernel, where phcpy is installed.

Code snippets are defined via Jupyter’s notebook extensions:
- each snippet illustrates a particular feature of phcpy; and
- each snippet runs independently.

Users have actual accounts on the server:
- a terminal window to a Linux computer.
- Facilitates collaborations, sharing notebooks and data.
Numerical Algebraic Geometry in the Cloud 2

1 introduction
 - numerical algebraic geometry
 - in the cloud

2 numerical irreducible decomposition
 - an illustrative example
 - witness sets, cascades, and membership test
 - factoring with linear traces and monodromy
 - a general solve command

3 tutorial
 - sign up and login
 - demonstration
an illustrative example

In the code snippets, select solution sets
→ cascade of homotopies
→ an illustrative example

```
pol1 = '(x^2 + y^2 + z^2 - 1)*(y - x^2)*(x - 0.5);'
pol2 = '(x^2 + y^2 + z^2 - 1)*(z - x^3)*(y - 0.5);'
pol3 = '(x^2 + y^2 + z^2 - 1)*(z - x*y)*(z - 0.5);'
pols = [pol1, pol2, pol3]
from phcpy.cascades import run_cascade
otp = run_cascade(3, 2, pols)
dims = otp.keys()
dims.sort(reverse=True)
for dim in dims:
    print 'number of solutions at dimension', dim, ':
    print len(otp[dim][1])
```
a sphere, the twisted cubic, an isolated point
a witness set for the sphere
a witness set for the twisted cubic
a random line will miss the twisted cubic
a random line will intersect the sphere
introduction
- numerical algebraic geometry
- in the cloud

numerical irreducible decomposition
- an illustrative example
- witness sets, cascades, and membership test
- factoring with linear traces and monodromy
- a general solve command

tutorial
- sign up and login
- demonstration
witness sets

To compute the degree of the twisted cubic, consider

\[\mathcal{E}(f)(x) = \begin{cases}
 x_2 - x_1^2 = 0 \\
 x_3 - x_1^3 = 0 \\
 c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 = 0
\end{cases} \quad c_0, c_1, c_2, c_3 \in \mathbb{C}, \]

where \(c_0, c_1, c_2, \) and \(c_3 \) are random numbers.
The substitution \(x_2 = x_1^2 \) and \(x_3 = x_1^3 \) in the last equation shows that the degree of \(f^{-1}(0) \) equals three.

A witness set for a \(k \)-dimensional solution set consists of

- \(k \) hyperplanes with random coefficients; and
- the set of \(d \) isolated solutions on those hyperplanes.

Because the hyperplanes are random, all \(d \) isolated solutions are generic points and \(d \) is the degree of the set.
Consider the system

\[f(x) = \begin{cases}
(x_1^2 - x_2)(x_1 - 0.5) = 0 \\
(x_1^3 - x_3)(x_2 - 0.5) = 0 \\
(x_1 x_2 - x_3)(x_3 - 0.5) = 0
\end{cases} \]

The solutions of the system \(f(x) = 0 \) are

- the twisted cubic, a one dimensional solution set; and
- four isolated points.

Can we compute all solutions with one homotopy?
a cascade homotopy

To compute numerical representations of the twisted cubic and the four isolated points, use

\[
\begin{align*}
\mathbf{h}(\mathbf{x}, z_1, t) &= \begin{bmatrix}
(x_1^2 - x_2)(x_1 - 0.5) \\
(x_1^3 - x_3)(x_2 - 0.5) \\
(x_1 x_2 - x_3)(x_3 - 0.5) \\
t (c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3)
\end{bmatrix} + t \begin{bmatrix}
\gamma_1 \\
\gamma_2 \\
\gamma_3 \\
z_1
\end{bmatrix} z_1 = 0.
\end{align*}
\]

At \(t = 1 \): \(\mathbf{h}(\mathbf{x}, z_1, t) = \mathcal{E}_1(f)(\mathbf{x}, z_1) = 0 \).

At \(t = 0 \): \(\mathbf{h}(\mathbf{x}, z_1, t) = f(\mathbf{x}) = 0 \).

As \(t \) goes from 1 to 0, the hyperplane is removed from the embedded system, and \(z_1 \) is forced to zero.
Summarizing the progress of the path tracking:

<table>
<thead>
<tr>
<th>13 paths</th>
<th>0 paths to infinity</th>
<th>\mathcal{W}_1 witness set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 solutions with $z_1 = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 solutions with $z_1 \neq 0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 paths</th>
<th>1 path to infinity</th>
<th>$\hat{\mathcal{W}}_0$ witness superset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 converging paths</td>
<td></td>
</tr>
</tbody>
</table>

Starting with 13 paths of the embedded system, the cascade produces three witness points for the cubic and 9 points which may be isolated or lie on the cubic.
regularity results

Theorem (superwitness set generation)

For an embedding $\mathcal{E}_i(f)(\mathbf{x}, \mathbf{z})$ of $f(\mathbf{x}) = 0$ with i random hyperplanes and i slack variables $\mathbf{z} = (z_1, z_2, \ldots, z_i)$, we have

1. solutions with $\mathbf{z} = \mathbf{0}$ contain $\deg W$ generic points on every i-dimensional component W of $f(\mathbf{x}) = 0$;
2. solutions with $\mathbf{z} \neq \mathbf{0}$ are regular; and
3. the solution paths defined by the cascading homotopy starting at $t = 0$ with all solutions with $z_i \neq 0$ reach at $t = 1$ all isolated solutions of $\mathcal{E}_{i-1}(f)(\mathbf{x}, \mathbf{z}) = 0$.

Jan Verschelde (UIC) Numerical Algebraic Geometry in the Cloud 2 CASC 2017, 18 September 19 / 38
an algorithm

Input: $f(x) = 0$ a polynomial system;
 d the top dimension of $f^{-1}(0)$.
Output: $\hat{W} = [\hat{W}_d, \hat{W}_{d-1}, \ldots, \hat{W}_0]$
 super witness sets for all dimensions.

$V := \text{Solve}(\mathcal{E}_d(f)(x, z) = 0)$;
for k from d down to 1 do
 $\hat{W}_k := \{ (x, z) \in V \mid z = 0 \}$;
 $V := \{ (x, z) \in V \mid z_k \neq 0 \}$;
 if $V = \emptyset$ then return \hat{W};
else $h(x, z, t) := (1 - t)\mathcal{E}_k(f)(x, z) + t \left(\begin{array}{c} \mathcal{E}_{k-1}(f)(x, z) \\ z_k \end{array} \right)$;
 $V := \{ (x, z) \mid h(x, z, 1) = 0 \}$;
end if;
end for;
$\hat{W}_0 := \{ (x, z) \in V \mid z = 0 \}$.
deciding membership

Given a witness set representation for a solution set, we can decide whether a point belongs to the solution set, via:

Algorithm HomotopyMembershipTest(\mathcal{W}_L, y)

Input: \mathcal{W}_L is witness set for a solution set;
y is any point in space.
Output: yes or no, depending whether y belongs to the set.

$$h(x, t) = (1 - t) \begin{pmatrix} f(x) = 0 \\ L(x) = 0 \end{pmatrix} + t \begin{pmatrix} f(x) = 0 \\ L(x) = L(y) \end{pmatrix} = 0;$$

$$\mathcal{V} := \{ x \mid h(x, 1) = 0 \};$$
return $y \in \mathcal{V}$.
A curve V is represented by 3 witness points on L:

To decide whether $y \in V$, we create a new witness set for a line L_y through y.

As $y \notin V \cap L_y$, we conclude $y \notin V$.

1 introduction
 - numerical algebraic geometry
 - in the cloud

2 numerical irreducible decomposition
 - an illustrative example
 - witness sets, cascades, and membership test
 - factoring with linear traces and monodromy
 - a general solve command

3 tutorial
 - sign up and login
 - demonstration
the linear trace

Consider \(f \in \mathbb{C}[x, y] \), \(\deg(f) = 3 \). Does \(f \) factor?

Assume \(f \) has a quadratic factor \(q \).

We view \(f \in \mathbb{C}[x][y] \) and write \(q \) as

\[
q(x, y(x)) = (y - y_1(x))(y - y_2(x))
\]
\[
= y^2 - (y_1(x) + y_2(x))y + y_1(x)y_2(x).
\]

Observe: if \(q \) is a quadratic factor of \(f \), then \(y_1(x) + y_2(x) \) must be a linear function of \(x \), otherwise the degree of \(q \) would be higher than two.

Denote \(t_1(x) = y_1(x) + y_2(x) \) and call \(t_1 \) the linear trace.
interpolating the linear trace

Fix \(x = x_1 \) and solve \(f(x_1, y) = 0 \) for \(y \).

As \(\deg(f) = 3 \), we find three roots and write them as \((x_1, y_1(x^*)), (x_1, y_2(x^*)), \) and \((x_1, y_3(x^*)) \).

If \(f \) has a quadratic factor \(q \), its linear trace \(t_1 \) is
\[
t_1(x) = y_1(x) + y_2(x) = ax + b, \quad \text{for some } a, b \in \mathbb{C}.
\]

Take \(x_2 \neq x_1 \) and consider
\[
\begin{align*}
ax_1 + b &= y_1(x_1) + y_2(x_1) \\
ax_2 + b &= y_1(x_2) + y_2(x_2)
\end{align*}
\]

Solving the linear system for \(a \) and \(b \) determines \(t_1(x) \).

Take a third sample set, at \(x = x_3 \) and test
\[
t(x_3) = ax_3 + b = y_1(x_3) + y_2(x_3).
\]
an example

Use \{(x_0, y_{00}), (x_0, y_{01}), (x_0, y_{02})\} and \{(x_1, y_{10}), (x_1, y_{11}), (x_1, y_{12})\} to find \(t_1(x) = c_0 + c_1 x \).

At \{(x_2, y_{20}), (x_2, y_{21}), (x_2, y_{22})\}: c_0 + c_1 x_2 = y_{20} + y_{21} + y_{22}?
A linear trace test answers each question:

Is 1 a factor?
- Yes: Is 2 a factor?
 - Yes: 1,2,3 is the factorization
 - No: 1,23 is the factorization
- No: Is 12 a factor?
 - Yes: 12,3 is the factorization
 - No: is 13 a factor?
 - Yes: 13,2 is the factorization
 - No: 123 is the factorization

This combinatorial enumeration works for low degrees, and is improved via LLL to solve the knapsack problem.
avoiding wrong factorizations

Consider $f(x, y) = (x^2 + y^2)^3 - 4x^2y^2 = 0$.

By symmetry: if $f(a, b) = 0$, then also $f(\pm a, \pm b) = 0$.

Pictures of $f(x, y) = 0$ and $f(x + \frac{1}{2}y, y) = 0$:
Consider \(\begin{cases} f(x, y) = 0 \\ c_0 + c_1 x + c_2 y = 0 \end{cases} \) for random \(c_0, c_1, \) and \(c_2 \).

To sample points, we apply the coordinate transformation:

\[
\phi : \mathbb{C}^2 \to \mathbb{C}^2 : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \phi(x, y) = \begin{bmatrix} -c_1 & -c_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.
\]

As the samples satisfy the equation \(c_0 + c_1 x + c_2 y = 0 \), we have \(\phi(x, y) = (c_0, y) \).

The coordinate transformation applies in any dimension.
$z^3 - w = 0$ as a Riemann surface
monodromy loops

Moving between witness sets:

\[h_{KL}(x, t) = \lambda \begin{pmatrix} f(x) \\ K(x) \end{pmatrix} (1 - t) + \begin{pmatrix} f(x) \\ L(x) \end{pmatrix} t = 0, \quad \lambda \in \mathbb{C}, \]

we find new witness points on the hyperplanes \(K(x) = 0 \), starting at those witness points satisfying \(L(x) = 0 \), letting \(t \) move from one to zero.

Choosing a random \(\mu \neq \lambda \), we move back from \(K \) to \(L \):

\[h_{LK}(x, t) = \mu \begin{pmatrix} f(x) \\ L(x) \end{pmatrix} (1 - t) + \begin{pmatrix} f(x) \\ K(x) \end{pmatrix} t = 0, \quad \mu \in \mathbb{C}. \]

After \(h_{KL} \) and \(h_{LK} \) we arrive at the same witness set. Permutated points belong to the same irreducible component.
monodromy breakup algorithm

Input: W_L, d, N
Output: \mathcal{P}

0. initialize \mathcal{P} with d singletons;
1. generate two slices L' and L'' parallel to the given L;
2. track d paths for witness set with L';
3. track d paths for witness set with L'';
4. for k from 1 to N do
 4.1 generate new slices K and a random λ;
 4.2 track d paths defined by h_{KL};
 4.3 generate a random μ;
 4.4 track d paths defined by h_{LK};
 4.5 compute the permutation and update \mathcal{P};
 4.6 if linear trace test certifies \mathcal{P}
 then leave the loop;
 end if;
end for.
Numerical Algebraic Geometry in the Cloud 2

1. introduction
 - numerical algebraic geometry
 - in the cloud

2. numerical irreducible decomposition
 - an illustrative example
 - witness sets, cascades, and membership test
 - factoring with linear traces and monodromy
 - a general solve command

3. tutorial
 - sign up and login
 - demonstration
a general solve command

In the code snippets, select solution sets
→ numerical irreducible decomposition
→ an example

```python
pol0 = '(x1-1)*(x1-2)*(x1-3)*(x1-4);'
pol1 = '(x1-1)*(x2-1)*(x2-2)*(x2-3);'
pol2 = '(x1-1)*(x1-2)*(x3-1)*(x3-2);'
pol3 = '(x1-1)*(x2-1)*(x3-1)*(x4-1);'
pols = [pol0, pol1, pol2, pol3]
from phcpy.factor import solve, write_decomposition
deco = solve(4, 3, pols, verbose=False)
write_decomposition(deco)

To get the witness set at dimension one:

(witpols, witsols, dim) = deco[1]
print len(witsols)
```
1 introduction
 - numerical algebraic geometry
 - in the cloud

2 numerical irreducible decomposition
 - an illustrative example
 - witness sets, cascades, and membership test
 - factoring with linear traces and monodromy
 - a general solve command

3 tutorial
 - sign up and login
 - demonstration
sign up and login, at www.phcpack.org

The sign up procedure requires a functional email address.

Two steps in obtaining an account:

2. Click on the link sent in the email to your email address.

Two kernels offer phcpy, do import phcpy in both:

1. python 2 (the code snippets work for version 2 of python).
2. SageMath uses python 2 as the scripting language.

Select the kernel from the new menu in the upper right.
Numerical Algebraic Geometry in the Cloud 2

1. introduction
 - numerical algebraic geometry
 - in the cloud

2. numerical irreducible decomposition
 - an illustrative example
 - witness sets, cascades, and membership test
 - factoring with linear traces and monodromy
 - a general solve command

3. tutorial
 - sign up and login
 - demonstration
In [3]:

doctest.__doc__

```python
pol0 = '(x1-1)*(x1-2)*(x1-3)*(x1-4)
pol1 = '(x1-1)*(x2-1)*(x2-2)*(x2-3)
pol2 = '(x1-1)*(x2-2)*(x2-3)*(x3-2)
pol3 = '(x1-1)*(x2-1)*(x2-3)*(x3-1)*(x4-1)
pols = [pol0, pol1, pol2, pol3]
from phcpy.factor import solve, write_decomposition
deco = solve(4, 3, pols, verbose=False)
write_decomposition(deco)
```

the factorization at dimension 3 #components : 1

```plaintext
[(1), 3.2057689836051395e-14]
```

the factorization at dimension 2 #components : 1

```plaintext
[(1), 7.549516557451064e-15]
```

the factorization at dimension 1 #components : 12

```plaintext
[(1), 3.6637359812630166e-15], [(2), 1.4210854715202004e-14], [(3), 2.4424906541753444e-15],
[(4), 1.1324274851176598e-14], [(5), 2.1094237467877974e-15], [(6), 3.3861802251067274e-15],
[(7), 1.4654943925052066e-14], [(8), 3.4416913763379835e-15], [(9), 2.609024107869118e-15],
[(10), 3.55271367800501e-15], [(11), 3.941291737419306e-15], [(12), 1.1879386363489175e-14]
```

the number of isolated solutions : 4

In [2]:

```python
(witpols, witsols, dim) = deco[1]
print len(witsols)
```

12