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problem statement

Our focus is on algebraic curves:
A polynomial homotopy is a family of polynomial systems.
At least one of the variables in the homotopy is a parameter.
Our polynomial homotopies have algebraic curves as solutions.

The input to our problem is
1 a polynomial homotopy f(x0, x1, x2, . . . , xn) = 0; and
2 a solution for x0 = 0: f(0, z1, z2, . . . , zn) = 0.

The output is a solution in the form of a power series:{
x0 = tv0

xi = zi tvi (1 + O(t)), i = 1,2, . . . ,n.

We want to compute the terms of the series with Newton’s method.
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motivation

Why do we want to do this?

Two good reasons:

1 The solution paths of a polynomial homotopy are algebraic curves.
We want to approximate those solution paths better to improve the
accuracy and the reliability of numerical path trackers.

2 Solving a problem may require starting at a singular solution.
Typically we move from a generic instance to a specific instance,
but the introduction of randomness may destroy all structure.
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Padé Approximants
Consider the homotopy: (1− t)(x2 − 1) + t(3x2 − 3/2) = 0.
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the circles of Apollonius

Given three circles, find all circles which touch all three given circles.

If the three given circles touch each other, then the solutions are the
given circles (with multiplicity two) and other two regular circles.
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linearization

Working with truncated power series, computing modulo O(td ), is
doing arithmetic over the field of formal Laurent series C((t)).

Linearization: consider Cn((t)) instead of C((t))n. Instead of a vector of
power series, we consider a power series with vectors as coefficients.

Solve Ax = b, A ∈ Cn×n((t)), b,x ∈ Cn((t)).

A = A0ta + A1ta+1 + · · · ,
b = b0tb + b1tb+1 + · · ·
x = x0tb−a + x1tb−a+1 + · · ·

where Ai ∈ Cn×n and bi ,xi ∈ Cn.

Jan Verschelde (UIC) Gauss-Newton for Power Series 22 September 2017 11 / 29



block linear algebra

Computing the first d terms of the solution of Ax = b:(
A0ta + A1ta+1 + A2ta+2 + · · ·+ Ad ta+d)
·
(
x0tb−a + x1tb−a+1 + x2tb−a+2 + · · ·+ xd tb−a+d)

= b0tb + b1tb+1 + b2tb+2 + · · ·+ bd tb+d .

Written in matrix format:
A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .

If A0 is regular, then solving Ax = b is straightforward.
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biunimodular vectors and cyclic n-roots


x0 + x1 + · · ·+ xn−1 = 0

i = 2,3,4, . . . ,n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

The system arises in the study of biunimodular vectors.
A vector u ∈ Cn of a unitary matrix A is biunimodular if for
k = 1,2, . . . ,n: |uk | = 1 and |vk | = 1 for v = Au.

J. Backelin: Square multiples n give infinitely many cyclic n-roots.
Technical Report, 1989.
H. Führ and Z. Rzeszotnik. On biunimodular vectors for unitary
matrices. Linear Algebra and its Applications 484:86–129, 2015.
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series developments for cyclic 8-roots

Cyclic 8-roots has solution curves not reported by Backelin.

With Danko Adrovic (ISSAC 2012, CASC 2013): a tropism is
v = (1,−1,0,1,0,0,−1,0), the leading exponents of the series.

The corresponding unimodular coordinate transformation x = zM is

M =



1 −1 0 1 0 0 −1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



x0 = z0

x1 = z1z−1
0

x2 = z2
x3 = z3z0
x4 = z4
x5 = z5

x6 = z6z−1
0

x7 = z7.

Solving inv(f)(x = zM) = 0 gives the leading term of the series.
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version 2.4.21 of PHCpack and 0.5.0 of phcpy

The source code (GNU GPL License) is availale at github.

After 2 Newton steps with phc -u, the series for z1:

(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0^2
+( 5.00000000000000E-01 - 2.37676980513323E-17*i)*z0
+(-5.00000000000000E-01 - 5.00000000000000E-01*i);

After 3 Newton steps with phc -u, the series for z1:

( 7.12500000000000E+00 + 7.12500000000000E+00*i)*z0^4
+(-1.52745512076048E-16 - 4.25000000000000E+00*i)*z0^3
+(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0^2
+( 5.00000000000000E-01 - 1.45255178343636E-17*i)*z0
+(-5.00000000000000E-01 - 5.00000000000000E-01*i);
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Viviani’s curve – the regular case
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Viviani’s curve – two turning points
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Viviani’s curve – turning at a crossing point
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three possible scenarios

We develop a power series for x0 = t .

Geometric interpretation: we cut the curve with the plane
perpendicular to the first coordinate axis.

We assume: the curve does not lie in the coordinate plane x0 = 0.

There are three different cases at an intersection point:
1 The plane cuts the curve transversally (regular).
2 The plane touches the curve at the point.
3 The plane intersects at a crossing point.

As in the crossing point of the Viviani curve,
the crossing point may occur at a turning point.

Jan Verschelde (UIC) Gauss-Newton for Power Series 22 September 2017 22 / 29



Viviani’s curve at a turning point

Viviani’s curve expanded around (0,0,2):
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Viviani’s curve at a turning point

Consider:

f = (x2
1 + x2

2 + x2
3 − 4, (x1 − 1)2 + x2

2 − 1), p = (0,0,2).

We apply the transformation x1 → 2t2 and start from z = (2t ,2).[
4t 4
4t 0

]
∆z = −

[
4t2 + 4t4

4t4

]
.

The matrix is invertible over C((t)).

Its inverse begins with negative exponents of t :[
0 1/4

1/4 t−1 −1/4 t−1

]
.

Jan Verschelde (UIC) Gauss-Newton for Power Series 22 September 2017 24 / 29



linearization

The linearized block form is

0 4 0 0 0 0
0 0 0 0 0 0
4 0 0 4 0 0
4 0 0 0 0 0
0 0 4 0 0 4
0 0 4 0 0 0

x =



−4
0
0
0
−4
−4

 .

Solving gives the Newton update

∆z =

[
−t3

−t2

]
.

Substituting z + ∆z = (2t − t3,2− t2) into the Viviani equations gives
(x6

1 + x4
1 , x

6
1 ), the desired cancellation of terms.
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Lower Triangular Echelon Form

The banded block structure of a generic matrix for n = 5 at the left,
with its lower triangular echelon form at right:
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Viviani’s curve, continued

The block matrix reduction:

0 4 0 0 0 0
0 0 0 0 0 0
4 0 0 4 0 0
4 0 0 0 0 0
0 0 4 0 0 4
0 0 4 0 0 0

→


0 0 0 0 0 0
4 0 0 0 0 0
0 4 0 0 0 0
0 4 4 0 0 0
0 0 0 4 0 0
0 0 0 4 4 0

 .
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a singular configuration of Apollonius circles

The system is f(t , x1, x2, r) =
x2

1 + 3x2
2 − r2 − 2r − 1 = 0

x2
1 + 3x2

2 − r2 − 4x1 − 2r + 3 = 0
3t2 + x2

1 − 6tx2 + 3x2
2 − r2 + 6t − 2x1 − 6x2 + 2r + 3 = 0.

We examine at the point (t , x1, x2, r) = (0,1,1,1) = p.

We obtain
x1 = 1
x2 = 1 + 7.464t + 45.017t2 + 290.992t3 + · · ·
r = 1 + 11.196t + 77.971t2 + 504.013t3 + · · · .

The growth of the coefficients explains why one circle grows large.
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