
SI2-SSE: Solving Polynomial Systems with PHCpack and phcpy
Jan Verschelde, University of Illinois at Chicago

the mathematical problem
Solve f (x) = 0, a polynomial system in several variables x.
Some examples of algorithms and computed objects:
• evaluation and differentiation of polynomials,
• trajectories of solutions defined by parameters.
Example of an input:

2

x**2 + 4*y**2 - 4;

2*y**2 - x;

The polynomials define an ellipse and a parabola.
The solutions of the system are points of intersection.
How? Deform systems, starting at the solutions of

2

x**2 - 1;

y**2 - 1;

what kind of mathematics?
Solving polynomial systems requires many methods.
• computational algebraic geometry
What does solving a system of polynomials mean?
• discrete and computational geometry
The exponents of the monomials define a Newton polytope.
• symbolic-numeric computation
Polynomials are algebraic objects (symbolic algebra),
that we evaluate and deform (numerical analysis).
• parallel and distributed computing
Parallelism includes message passing, shared memory multithreading, and
acceleration with graphics processor units.

PHCpack
PHCpack is a package for Polynomial Homotopy Continuation.
ACM Transactions on Mathematical Software achived version 1.0 (Ada 83) as
Algorithm 795, vol. 25, no. 2, pages 251–276, 1999.

• most popular seems to be the blackbox solver:

phc -b computes all isolated solutions of a polynomial system.
Version 2.0 was rewritten using concepts of Ada 95
and extended with arbitrary multiprecision arithmetic.
Versions 2.1, 2.2, and 2.3 added a numerical irreducible decomposition for
positive dimensional solution sets. Since summer of 2005, smaller and more
frequent releases enable evolutionary improvements.
• Distributed under the GNU General Public License.
Public repository under version control
at https://github.com/janverschelde/PHCpack.
Documentation is written with the aid of Sphinx.

users and applications
Google scholar counts the citations to over four hundred.
More than eighty documented users in the scientific literature.
Who counts as a user?

• Published scientific results obtained with the software,
• obtained without assistance of the software developer (no co-author!).
Some sampling of the application areas:
• real algebraic geometry: disprove Kouchnirenko’s conjecture [Haas 2002],
• mechanism design: constrained robots [Perez-McCarthy 2004],
• geomagnetism: stable states in chains of crystals [Newell 2009].
The full list is at http://www.math.uic.edu/∼jan/users.html.

goals of the development
PHCpack prototyped polyhedral homotopies for isolated solutions
and a numerical irreducible decomposition for sets of solutions.
Some current projects:
• Littlewood-Richardson homotopies
In collaboration with Abraham Martin del Campo, Anton Leykin, Frank Sottile,
Ravi Vakil, we compute linear planes that meet a given set of planes in specific
ways. Implemented in a Macaulay2 package.
• methods from tropical algebraic geometry
As a continuation of joint work with Danko Adrovic,
we develop Puiseux power series to represent solution sets.
Power series are a hybrid form of symbolic-numeric computation.
• GPU acceleration of polynomial homotopies
In collaboration with Xiangcheng Yu, GPU acceleration compensates the cost of
using the QD library [Hida, Li, and Bailey 2001].
• development of a web interface, we have a beta version running
at https://kepler.math.uic.edu (Joint with Xiangcheng Yu).

using phcpy

>>> from phcpy.solver import solve

>>> f = [’x**2*y**2 + x + y;’,’x*y + x + y + 1;’]

>>> s = solve(f,silent=True)

>>> len(s)

4

>>> print s[0]

t : 1.00000000000000E+00 0.00000000000000E+00

m : 1

the solution for t :

x : -1.00000000000000E+00 0.00000000000000E+00

y : -1.61803398874989E+00 0.00000000000000E+00

== err : 9.930E-17 = rco : 4.775E-02 = res : 2.220E-16 =

Indicators for the quality of the solution:
• err: the norm of the last update made by Newton’s method (forward error),
• rco: estimate for the inverse condition number of the Jacobian matrix,
• res: norm of the evaluated solution (backward error).

generators for the path trackers
What more can you do with phcpy scripting?

>>> from phcpy.solver import total degree start system

>>> p = [’x**2 + 4*x**2 - 4;’, ’2*y**2 - x;’]

>>> (q,s) = total degree start system(p)

>>> from phcpy.trackers import initialize standard tracker

>>> from phcpy.trackers import initialize standard solution

>>> from phcpy.trackers import next standard solution

>>> initialize standard tracker(p,q)

>>> initialize standard solution(len(p),s[0])

>>> s1 = next standard solution()

The user requests the next solution point on the path and controls the pace of
the path tracker. Also useful for plotting paths, for example:
>>> points = [next standard solution() for i in range(11)]

and then use matplotlib on the list of points.

parallelism and performance
Most computers are multiprocessor and multicore.
Graphic cards have surpassed ordinary CPUs in computing power.
• message passing (with Yusong Wang, Yun Guan, Anton Leykin)

By design, the main program is written in C, responsible for the job scheduling,
with the aid of MPI. The jobs execute Ada procedures.
• multicore shared memory programming (with Genady Yoffe)

The goal of this project is to offset the cost of double double and quad double
arithmetic with multithreaded code.
phc -b -t4 runs path trackers in the blackbox solver with 4 threads, using the
tasking mechanism provided by Ada (multitasking can be called in phcpy).
• acceleration with graphics processors (with Xiangcheng Yu).
The code is a mix of Ada, C, and C++ CUDA.

accelerating polynomial homotopy continuation
Results on tracking one path of the cyclic n-roots benchmark problem,
accelerated on the NVIDIA K20C, using GQD [Lu, He, and Luo 2010]:

16 32 48 64 80 96 112128144160176192208224240 272 304 336352
tracking one path of cyclic n-roots, for n from 16 to 352

0

10

20

30

40

50

60

70

sp
e
e
d
u
p
s
a
re
 (
a
cc
e
le
ra
te
d
 t
im

e
)/
(t
im

e
 o
n
 o
n
e
 C
P
U
 c
o
re
)

speedups of accelerated path tracker on cyclic n-roots

double
double double
quad double

Double digit speedups allow to compensate for the overhead caused by complex
double double and quad double arithmetic.
Joint with Xiangcheng Yu, preprint arXiv:1501.06625 [cs.MS].

interfaces
Interfaces translate inputs (polynomials) and outputs (solutions).
• with computer algebra and mathematical software systems:

Maple (with Anton Leykin), MATLAB & Octave (with Yun Guan), Macaulay2
(with Elizabeth Gross and Sonja Petrović).

• PHCpack is an optional component of Sage, the current phc.py is by Marshall
Hampton and Alex Jokela, based on efforts of Kathy Piret and William Stein.

jan@math.uic.edu (email) This material is based upon work supported by the National Science Foundation under Grant 1440534. 2015 NSF SI2 PI Workshop: February 17-18 0 / 0

