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A. introduction

Overview

• Homotopy continuation applies symbolic-numeric algorithms,

exploiting sparsity to compute a generically sharp root count,

tracking solution paths using predictor-corrector methods.

• When encountering singular solutions, we recondition the

problem adding sufficiently many equations to deflate the

multiplicity down to the regular case.

• For positive dimensional solution sets, a numerical irreducible

decomposition classifies the sets according to their dimension

and breaks the pure dimensional sets into irreducible factors.
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A. introduction

Problem Statement

Input: f(x) = 0, a system of N polynomials in n unknowns;

the coefficients of f are approximate complex numbers.

Output: a numerical irreducible decomposition of f−1(0);

over Cn, N = 1: absolute factorization.

Structure of talk (organization of some topics):

1. Assume N = n and compute all isolated solutions.

2. Deflation to handle isolated singular solutions.

3. Reduce general case to fully determined case.

page 2 of A



A. introduction

Symbolic-Numeric Algorithms

Synergy between symbolic computation and numerical analysis

necessary to solve polynomial systems from real applications.

Symbolic: exploit structure and recondition

+ a priori estimates of complexity of the problem

+ find the right equations to capture the roots

Numeric: balance between efficiency and accuracy

+ numerically stable deformation methods

+ condition numbers report quality of output

Computer Algebra cares about implementations and users.
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A. introduction

Homotopy Continuation Methods

Solve f(x) = 0 in two stages:

1. The homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C,

defines solution paths x(t), for t going from 0 to 1.

g(x) = 0 is a start system with the same structure as f .

All solutions of g(x) = 0 are isolated and regular.

2. Continuation methods apply predictor-corrector techniques to

track the solution paths defined by the homotopy h(x, t) = 0.

Singularities do not occur for t < 1 for a generic choice of γ.

Knowing the right #paths is critical to the performance!
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A. introduction

The Gamma Trick

Consider the homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C.

All solutions of g(x) = 0 are isolated and regular.

1. Singular solutions of h(x, t) = 0 satisfy

H(x, t) =





h(x, t) = 0

det(Jh(x, t)) = 0
Jh is the Jacobian of h.

2. Embed (x, t) ∈ Cn × C into projective space: (z, t) ∈ Pn × C.

Apply the main theorem of elimination theory to H−1(0),

eliminating z, i.e.: apply π : Pn × C → C : (z, t) 7→ t.

Then π(H−1(0)) is an algebraic set, defined by p(t) = 0.

3. Because all solutions of g(x) = 0 are isolated and regular,

p(0) 6= 0. So there are only finitely many singularities.

For a generic choice of γ, H(x, t) = 0 has no solutions for t ∈ [0, 1).
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A. introduction

a synthetic proof of Bézout’s theorem

Mario Pieri: Sopra un teorema di

geometria ad n dimensioni. Giornale di

Matematiche di Battaglini 26:251-254, 1888.

• Consider two varieties V and W in n-space,

dim(V ) + dim(W ) = n, assume #(V ∩W ) <∞. To show that

in general, #(V ∩W ) = deg(V )× deg(W ), use induction on n.

• Applying the principle of correspondence (Chasles), replace one

hypersurface of degree d by a product of d hyperplanes and

apply d times the induction hypothesis (true for n− 1).

Elena Anne Marchisotto and James T. Smith: The Legacy of

Mario Pieri in Geometry and Arithmetic. Birkhäuser, 2007.
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A. introduction

Product Deformations
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





x2 − 1 = 0

y2 − 1 = 0
︸ ︷︷ ︸

start system




(1−t) +








x2 + 4y2 − 4 = 0

2y2 − x = 0
︸ ︷︷ ︸

target system



t, γ ∈ C
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A. introduction

Some Introductions and Surveys

I.M. Gel’fand, M.M. Kapranov, and A.V. Zelevinsky: Discriminants,

Resultants and Multidimensional Determinants. Birkhäuser, 1994.

L. Blum, F. Cucker, M. Shub, and S. Smale: Complexity and Real

Computation. Springer-Verlag, 1998.

B. Sturmfels: Solving Systems of Polynomial Equations. AMS, 2002.

T.Y. Li.: Numerical solution of polynomial systems by homotopy

continuation methods. In F. Cucker, editor, Handbook of Numerical

Analysis. Volume XI. Special Volume: Foundations of Computational

Mathematics, pages 209–304. North-Holland, 2003.

A.J. Sommese and C.W. Wampler: The Numerical Solution of Systems

of Polynomials Arising in Engineering and Science.

World Scientific, 2005.
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B. isolated

Three Kinds of Homotopies

natural parameter: f(x,λ) = 0, λ ∈ Cm

the homotopy is fixed, the problem is to detect and handle

singularities efficiently and accurately

coefficient parameter: f(x,λ0(1− t) + λ1t) = 0

move from t = 0 at generic instance λ0

to t = 1, a specific instance λ1 of the parameters λ

because λ0 is generic, singular solutions occur only as t→ 1

artificial parameter: γ(1− t)g(x) + tf(x) = 0

the system g(x) = 0 is a start system with all its solutions

regular, resembling the structure of f
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B. isolated

A Hierarchy of Homotopies

Coefficient Parameter

Polyhedral Methods

Linear Products

Multihomogeneous

Total Degree

�
�

�
�

easier
start
system

?

more efficient
(fewer paths)

6iA

Below line A: solving start systems is done automatically.

Above line A: start system has generic values for the parameters.
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B. isolated

Multihomogeneous version of Bézout’s theorem

Consider Ax = λx, A ∈ Cn×n. plain Bézout’s theorem: D = 2n

Add a hyperplane c1x1 + c2x2 + · · ·+ cnxn + c0 = 0 for unique x.

Embed in multi-projective space: P× Pn, separating λ from x.

{λ} {x1, x2}

1 1

1 1

0 1

degree table

⇐⇒

{λ} {x1, x2}

λ+ γ1 α0 + α1x1 + α2x2

λ+ γ2 β0 + β1x1 + β2x2

1 c0 + c1x1 + c2x2

linear-product start system

The root count B = 1 · 1 · 1 + 1 · 1 · 1 + 0 · 1 · 1 is a permanent.

A. Morgan and A. Sommese: A homotopy for solving general
polynomial systems that respects m-homogeneous structures.
Appl. Math. Comput., 24(2):101–113, 1987.
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B. isolated

linear-product start systems

f(x) =

���
� ��

�

x1x
2
2 + x1x

3
3 − cx1 + 1 = 0 c ∈ �

x2x
2
1 + x2x

2
3 − cx2 + 1 = 0

x3x
2
1 + x3x

2
2 − cx3 + 1 = 0 D = 27

{x1} {x2, x3} {x2, x3} symmetric

{x2} {x1, x3} {x1, x3} supporting B = 21

{x3} {x1, x2} {x1, x2} set structure

Choose 7 random complex numbers c1, c2, . . . , c7 and create

g(x) =

���
� ��

�

(x1 + c1)(c2x2 + c3x3 + c4)(c5x2 + c6x3 + c7) = 0

(x2 + c1)(c2x1 + c3x3 + c4)(c5x1 + c6x3 + c7) = 0

(x3 + c1)(c2x1 + c3x2 + c4)(c5x1 + c6x2 + c7) = 0

8 generating solutions
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B. isolated

Geometric Root Counting

fi(x) =
a∈Ai

ciax
a

ci,a ∈ �

∗ = � \ {0}

f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

L(f) root count in ( �

∗)n desired properties

L(f) = L(f2, f1, . . . , fn) invariant under permutations

L(f) = L(f1x
a, . . . , fn) shift invariant

L(f) ≤ L(f1 + xa, . . . , fn) monotone increasing

L(f) = L(f1(xUa), . . . , fn(xUa)) unimodular invariant

L(f11f12, . . . , fn) root count of product

= L(f11, . . . , fn) + L(f12, . . . , fn) is sum of root counts
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B. isolated

Geometric Root Counting

fi(x) =
a∈Ai

ciax
a

ci,a ∈ �

∗ = � \ {0}

f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

properties of L(f) V (P) mixed volume

invariant under permutations V (P2, P1, . . . , Pn) = V (P)

shift invariant V (P1 + a, . . . , Pn) = V (P)

monotone increasing V (conv(P1 + a), . . . , Pn) ≥ V (P)

unimodular invariant V (UP1, . . . , UPn) = V (P)

root count of product V (P11 + P12, . . . , Pn)

is sum of root counts = V (P11, . . . , Pn) + V (P12, . . . , Pn)
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B. isolated

Geometric Root Counting

fi(x) =
a∈Ai

ciax
a

ci,a ∈ �

∗ = � \ {0}

f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

L(f) root count in ( �

∗)n V (P) mixed volume

L(f) = L(f2, f1, . . . , fn) V (P2, P1, . . . , Pn) = V (P)

L(f) = L(f1x
a, . . . , fn) V (P1 + a, . . . , Pn) = V (P)

L(f) ≤ L(f1 + xa, . . . , fn) V (conv(P1 + a), . . . , Pn) ≥ V (P)

L(f) = L(f1(xUa), . . . , fn(xUa)) V (UP1, . . . , UPn) = V (P)

L(f11f12, . . . , fn) V (P11 + P12, . . . , Pn)

= L(f11, . . . , fn) + L(f12, . . . , fn) = V (P11, . . . , Pn) + V (P12, . . . , Pn)

exploit sparsity L(f) = V (P) 1st theorem of Bernshtěın
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B. isolated

The Theorems of Bernshtěın

Theorem A: The number of roots of a generic system equals the

mixed volume of its Newton polytopes.

Theorem B: Solutions at infinity are solutions of systems

supported on faces of the Newton polytopes.

D.N. Bernshtěın: The number of roots of a system of equations.

Functional Anal. Appl., 9(3):183–185, 1975.

Structure of proofs: First show Theorem B, looking at power series

expansions of diverging paths defined by a linear homotopy

starting at a generic system. Then show Theorem A, using

Theorem B with a homotopy defined by lifting the polytopes.
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B. isolated

Some References

J. Canny and J.M. Rojas: An optimal condition for determining the

exact number of roots of a polynomial system.

In Proceedings of ISSAC 1991, pages 96–101. ACM, 1991.

J. Verschelde, P. Verlinden, and R. Cools: Homotopies exploiting Newton

polytopes for solving sparse polynomial systems.

SIAM J. Numer. Anal. 31(3):915–930, 1994.

B. Huber and B. Sturmfels: A polyhedral method for solving sparse

polynomial systems. Math. Comp. 64(212):1541–1555, 1995.

I.Z. Emiris and J.F. Canny: Efficient incremental algorithms for the

sparse resultant and the mixed volume.

J. Symbolic Computation 20(2):117–149, 1995.

page 7 of B



B. isolated

Bernshtěın’s first theorem

Let g(x) = 0 have the same Newton polytopes P as f(x) = 0,

but with randomly choosen complex coefficients.

I. Compute Vn(P): II. Solve g(x) = 0:

I.1 lift polytopes ⇔ II.1 introduce parameter t

I.2 mixed cells ⇔ II.2 start systems

I.3 volume of mixed cell ⇔ II.3 path following

III. Coefficient-parameter continuation to solve f(x) = 0:

h(x, t) = γ(1− t)g(x) + tf(x) = 0, for t from 0 to 1.

#isolated solutions in (C∗)n, C∗ = C \ {0}, of f(x) = 0 is

bounded by the mixed volume of the Newton polytopes of f .
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B. isolated

Software for Solving with Homotopies I

L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, and H.F. Walker:

HOMPACK90: A suite of Fortran 90 codes for globally

convergent homotopy algorithms.

ACM Trans. Math. Softw., 23(4):514–549, 1997.

J. Verschelde: Algorithm 795: PHCpack: A general-purpose solver

for polynomial systems by homotopy continuation.

ACM Trans. Math. Softw., 25(2):251–276, 1999.

Version 2.3.31 is available via http://www.math.uic.edu/~jan.

T. Gao, T.Y. Li, and M. Wu: Algorithm 846: MixedVol: a software

package for mixed-volume computation.

ACM Trans. Math. Softw., 31(4):555–560, 2005.

HOM4PS is available via http://www.math.msu.edu/~li.

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizutani:

PHoM – a polyhedral homotopy continuation method for

polynomial systems. Computing, 73(4):55–77, 2004.

Available via http://www.is.titech.ac.jp/~kojima.
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B. isolated

Software for Solving with Homotopies II

T. Gunji, S. Kim, K. Fujisawa, and M. Kojima: PHoMpara –

parallel implementation of the Polyhedral Homotopy

continuation Method for polynomial systems.

Computing 77(4):387–411, 2006.

H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson:

Algorithm 857: POLSYS GLP: A parallel general linear product

homotopy code for solving polynomial systems of equations.

ACM Trans. Math. Softw. 32(4):561–579, 2006.

T. Mizutani and A. Takeda: DEMiCs: A software package for

computing the mixed volume via dynamic enumeration of all

mixed cells. IMA Volume on Software for Algebraic Geometry.

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler:

Software for numerical algebraic geometry: a paradigm and

progress towards its implementation.

IMA Volume on Software for Algebraic Geometry.

Bertini is available at http://www.nd.edu/~sommese/bertini.
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C. deflation

Singularities are keeping us in business

numerical analysis: bifurcation points and endgames

Rall (1966); Reddien (1978); Decker-Keller-Kelley (1983);

Griewank-Osborne (1981); Hoy (1989);

Deuflard-Friedler-Kunkel (1987); Kunkel (1989, 1996);

Morgan-Sommese-Wampler (1991); Li-Wang (1993, 1994);

Allgower-Schwetlick (1995); Pönisch-Schnabel-Schwetlick (1999);

Allgower-Böhmer-Hoy-Janovský (1999); Govaerts (2000)

computer algebra: standard bases (SINGULAR)

Mora (1982); Greuel-Pfister (1996); Marinari-Möller-Mora (1993)

numerical polynomial algebra: multiplicity structure

Möller-Stetter (1995); Mourrain (1997);

Stetter-Thallinger (1998); Dayton-Zeng (2005)

deflation: Ojika-Watanabe-Mitsui (1983); Lecerf (2003)

page 1 of C



C. deflation

Twelve lines tangent to four spheres

Frank Sottile and Thorsten Theobald: Lines tangents to 2n− 2 spheres in Rn

Trans. Amer. Math. Soc. 354

pages 4815-4829, 2002.

Problem:

Given 4 spheres,

find all lines tangent

to all 4 given spheres.

Observe:

12 solutions in groups of 4.
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C. deflation

Twelve lines tangent to four spheres

Frank Sottile and Thorsten Theobald: Lines tangents to 2n− 2 spheres in Rn

Trans. Amer. Math. Soc. 354

pages 4815-4829, 2002.

Problem:

Given 4 spheres,

find all lines tangent

to all 4 given spheres.

Observe:

3 lines of multiplicity 4.
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C. deflation

An Input Polynomial System

x0**2 + x1**2 + x2**2 - 1;

x0*x3 + x1*x4 + x2*x5;

x3**2 + x4**2 + x5**2 - 0.25;

x3**2 + x4**2 - 2*x2*x4 + x2**2 + x5**2 + 2*x1*x5 + x1**2 - 0.25;

x3**2 + 1.73205080756888*x2*x3 + 0.75*x2**2 + x4**2 - x2*x4 + 0.25*x2**2

+ x5**2 - 1.73205080756888*x0*x5 + x1*x5

+ 0.75*x0**2 - 0.86602540378444*x0*x1 + 0.25*x1**2 - 0.25;

x3**2 - 1.63299316185545*x1*x3 + 0.57735026918963*x2*x3

+ 0.66666666666667*x1**2 - 0.47140452079103*x1*x2 + 0.08333333333333*x2**2

+ x4**2 + 1.63299316185545*x0*x4 - x2*x4 + 0.66666666666667*x0**2

- 0.81649658092773*x0*x2 + 0.25*x2**2

+ x5**2 - 0.57735026918963*x0*x5 + x1*x5 + 0.08333333333333*x0**2

- 0.28867513459481*x0*x1 + 0.25*x1**2 - 0.25;

Original formulation as polynomial system: Cassiano Durand.

Centers of the spheres at the vertices of a tetrahedron: Thorsten Theobald.

Algebraic numbers sqrt(3), sqrt(6), etc. approximated by double floats.

The system has 6 isolated solutions, each of multiplicity 4.
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C. deflation

Solutions at the End of Continuation

Two solutions in a cluster: (real and imaginary parts)

solution 1 :

x0 : -7.07106803165780E-01 3.77452918725401E-08

x1 : -4.08248430737360E-01 -1.83624917064964E-07

x2 : 5.77350143082334E-01 -8.36140714113780E-08

x3 : -2.50000000000000E-01 -1.57896818458518E-16

x4 : 4.33012701892221E-01 -9.11600174682333E-17

x5 : 9.56878363411174E-08 1.54062878745083E-07

solution 2 :

x0 : -7.07106794356709E-01 -1.29682370414209E-07

x1 : -4.08248217029256E-01 1.11010906008961E-07

x2 : 5.77350304985648E-01 -8.03312536501087E-08

x3 : -2.50000000000001E-01 -1.74789416181029E-16

x4 : 4.33012701892220E-01 -1.00914936462574E-16

x5 : -6.07788020445124E-08 -1.39412292964849E-07

this is the input to our deflation algorithm
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C. deflation

Newton’s Method for Overdetermined Systems

Singular Value Decomposition of N -by-n Jacobian matrix Jf :

Jf = UΣV T , U and V are orthogonal: UTU = IN , V
TV = In,

and singular values σ1 ≥ σ2 ≥ · · · ≥ σn as the only nonzero

elements on the diagonal of the N -by-n matrix Σ (N > n).

The condition number cond(Jf (z)) =
σ1

σn
.

Rank(Jf (z)) = R⇐⇒ Σ = diag(σ1, σ2, . . . , σR, 0, . . . , 0).

At a multiple root z0: Rank(Jf (z0)) = R < n.

Close to z0, z ≈ z0 : σR+1 ≈ 0, or |σR+1| < ε, ε is tolerance.

Moore-Penrose inverse: J+
f = V Σ+UT , with R = Rank(Jf ),

and Σ+ = diag( 1
σ1
, 1
σ2
, . . . , 1

σR
, 0, . . . , 0).

Then ∆z = −Jf (z)
+f(z) is the least squares solution.

Dedieu-Shub (1999); Li-Zeng (2005)
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C. deflation

Deflation Operator Dfl reduces to Corank One

Consider f(x) = 0, N equations in n unknowns, N ≥ n.

Suppose Rank(A(z0)) = R < n for z0 an isolated zero of f(x) = 0.

Choose h ∈ CR+1 and B ∈ Cn×(R+1) at random.

Introduce R+ 1 new multiplier variables λ = (λ1, λ2, . . . , λR+1).

Dfl(f)(x,λ) :=





f(x) = 0

A(x)Bλ = 0

hλ = 1

Rank(A(x)) = R

⇓

corank(A(x)B) = 1

Compared to the deflation of Ojika, Watanabe, and Mitsui:

(1) we do not compute a maximal minor of the Jacobian matrix;

(2) we only add new equations, we never replace equations.

page 6 of C



C. deflation

Newton’s Method with Deflation#
"

Ã
!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

page 7 of C



C. deflation

Newton’s Method with Deflation#
"

Ã
!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

?
[A+, R] := SVD(A(xk), ε);

xk+1 := xk −A+f(xk);
Gauss-Newton
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C. deflation

Newton’s Method with Deflation#
"

Ã
!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

?
[A+, R] := SVD(A(xk), ε);

xk+1 := xk −A+f(xk);
Gauss-Newton

?PPPPPPP

³³³³³³³

PP
PP

PPP

³³
³³

³³³
R = #columns(A)?

Yes-
º
¹
·
¸Output: f ;xk+1.
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C. deflation

Newton’s Method with Deflation#
"

Ã
!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

?
[A+, R] := SVD(A(xk), ε);

xk+1 := xk −A+f(xk);
Gauss-Newton

?PPPPPPP

³³³³³³³

PP
PP

PPP

³³
³³

³³³
R = #columns(A)?

Yes-
º
¹
·
¸Output: f ;xk+1.

?No

f := Dfl(f)(x, � ) =

�
�

�

f(x) = 0

G(x, � ) = 0
; Deflation Step

�
� := LeastSquares(G(xk+1, � ));

k := k + 1; xk := (xk,

�
� );

-
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C. deflation

12 Lines Tangent to 4 Spheres revisited

Continuation methods find 24 solutions, clustered in groups of 4.

The rank at all solutions is 4, corank is 2.

One deflation suffices to restore quadratic convergence.

An average condition number drops from 3.4E+8 to 1.1E+2.

We can compute the solutions

with accuracy close to machine precision,

on a system with approximate coefficients,

given with double float precision.
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C. deflation

A Bound on the Number of Deflations

Theorem (Anton Leykin, JV, Ailing Zhao):

The number of deflations needed to restore the

quadratic convergence of Newton’s method converging

to an isolated solution is strictly less than the

multiplicity.

Theoretical Computer Science, 359(1-3):111–122, 2006.

Duality Analysis of Barry H. Dayton and Zhonggang Zeng:

(1) tighter bound on number of deflations; and

(2) special case algorithms, for corank = 1.

B.H. Dayton and Z. Zeng: Computing the multiplicity structure in

solving polynomial systems.

In Proceedings of ISSAC2005, pages 116–123. ACM, 2005.
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D. decomposition

Numerical Irreducible Decomposition

input: f(x) = 0 a polynomial system with x ∈ Cn

• Stage 1: represent the k-dimensional solutions Zk, k = 0, 1, . . .

output: sequence [W0,W1, . . . ,Wn−1] of witness sets

Wk = (Ek, E
−1
k (0) \ Jk), degZk = #(E−1

k (0) \ Jk)

Ek = f + k random hyperplanes, Jk = “junk”

• Stage 2: decompose Zk, k = 0, 1, . . . into irreducible factors

output: Wk = {Wk1,Wk2, . . . ,Wknk
}, k = 1, 2, . . . , n− 1

nk irreducible components of dimension k

output: a numerical irreducible decomposition of f−1(0)

is a sequence of partitioned witness sets
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D. decomposition

Computing Witness Sets for f−1(0)

Witness set Wk = (Ek, E
−1
k (0) \ Jk) for Zk ⊂ f−1(0), k = dimZk,

consists of Ek = f + k random hyperplanes

and its solutions, #(E−1
k (0) \ Jk) = degZk.

• top down: use a cascade of homotopies

+ benefits from existing blackbox solver

− requires top dimension on input

• bottom up: with an equation-by-equation solver

+ requires no guess for top dimension

− performance depends on order of equations
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D. decomposition

Example of a Homotopy in the Cascade

To compute numerical representations of the twisted cubic and the

four isolated points, as given by the solution set of one polynomial

system, we use the following homotopy:

H(x, z1, t) =







(x2
1 − x2)(x1 − 0.5)

(x3
1 − x3)(x2 − 0.5)

(x1x2 − x3)(x3 − 0.5)


 + t




γ1

γ2

γ3


z1

t (c0 + c1x1 + c2x2 + c3x3) + z1



= 0

At t = 1: H(x, z1, t) = E(f)(x, z1) = 0.

At t = 0: H(x, z1, t) = f(x) = 0.

As t goes from 1 to 0, the hyperplane is removed from the system,

and z1 is forced to zero.
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D. decomposition

A Cascade of Homotopies

Denote Ei as an embedding of f(x) = 0 with i random hyperplanes

and i slack variables z = (z1, z2, . . . , zi).

Theorem (Sommese - Verschelde): J. Complexity 16(3):572–602, 2000

1. Solutions with (z1, z2, . . . , zi) = 0 contain degW generic

points on every i-dimensional component W of f(x) = 0.

2. Solutions with (z1, z2, . . . , zi) 6= 0 are regular; and

solution paths defined by

Hi(x, z, t) = tEi(x, z) + (1− t)


 Ei−1(x, z)

zi


 = 0

starting at t = 1 with all solutions with zi 6= 0

reach at t = 0 all isolated solutions of Ei−1(x, z) = 0.
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D. decomposition

#paths in twisted cubic + 4 isolated points example

The flow chart below summarizes the number of solution paths

traced in the cascade of homotopies.

13 paths - 0 paths to infinity

3 solutions with z1 = 0

10 solutions with z1 6= 0

- W1 witness set

?

10 paths - 1 path to infinity

9 converging paths - Ŵ0 witness superset

The set Ŵ0 contains, in addition to the four isolated roots, also

points on the twisted cubic. The points in Ŵ0 which lie on the

twisted cubic are considered junk and must be filtered out.

page 5 of D



D. decomposition

Absolute Factorization

“Given is a polynomial f(x, y) ∈ Q[x, y] and ε ∈ Q. Decide in
polynomial time in the degree and coefficient size if there is a

factorizable f̂(x, y) ∈ C[x, y] with ||f − f̂ || ≤ ε, for a reasonable

coefficient vector norm ||.||.”

Erich Kaltofen (JSC 29, 2000) (originally in Kaltofen, 1992)

Recent Work: new symbolic-numeric algorithms by

• T. Sasaki, T. Saito, T. Hilano (1992); T. Sasaki (2001)
• A. Galligo, D. Rupprecht (2001); G. Chèze, A. Galligo (2003)
• R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas,

S.M. Watt (2001)
• A.J. Sommese, J. Verschelde, C.W. Wampler (2001, 2002, 2004)
• S. Gao, E. Kaltofen, J. May, Z. Yang, L. Zhi (2004)
• Z. Zeng, B.H. Dayton (2004)
• A. Poteaux (2007)
• M. van Hoeij, A. Galligo (2007)
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monodromy

The Riemann Surface of z − w3 = 0:

-2

-1

0 Re(z)

1-1.5
-2

-1

-1

-0.5

Re(z^1/3)

0

0

1
2

0.5

2Im(z)

1

1.5

Loop around the singular point (0,0) permutes the points.
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monodromy

Generating Loops by Homotopies

WL represents a k-dimensional solution set of f(x) = 0, cut out by

k random hyperplanes L. For k other hyperplanes K, we move WL

to WK , using the homotopy hL,K,α(x, t) = 0, from t = 0 to 1:

hL,K,α(x, t) =


 f(x)

α(1− t)L(x) + tK(x)


 = 0, α ∈ C.

The constant α is chosen at random, to avoid singularities, as t < 1.

To turn back we generate another random constant β, and use

h
K,L,β(x, t) =


 f(x)

β(1− t)K(x) + tL(x)


 = 0, β ∈ C.

A permutation of points in WL occurs only among points on the

same irreducible component.
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monodromy

Linear Traces as Stop Criterium

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve





y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.

Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.

If 6=, then samples come from irreducible curve of degree > 3.
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monodromy

Linear Traces – an example

f−1(0)
x0

s
y00

s
y01

s
y02

x1

s
y10

s
y11

s
y12

x2s
y20

s
y21

s
y22

Use {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}

to find the linear trace t1(x) = c0 + c1x.

At {(x2, y20), (x2, y21), (x2, y22)}: c0 + c1x2 = y20 + y21 + y22?
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monodromy

Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!
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monodromy

Adjacent minors of a general 2-by-(n + 1) matrix

n = 3 :


 x11 x12 x13 x14

x21 x22 x23 x24


 f(x) =





x11x22 − x21x12 = 0

x12x23 − x22x13 = 0

x13x24 − x23x14 = 0

P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice walks and

primary decomposition. In Mathematical Essays in Honor of

Gian-Carlo Rota, ed. B.E. Sagan and R.P. Stanley, pages 173–193,

Birkhäuser, 1998.

S. Hoşten and J.Shapiro. Primary decomposition of lattice basis

ideals. J. Symbolic Computation 29(4&5): 625–639.
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monodromy

Computational results on adjacent minors

n d #f witness set #loops factorization

3 8 3 1.4 s 9 6.8 s

4 16 5 4.5 s 3 9.4 s

5 32 8 23.9 s 4 41.6 s

6 64 13 56.4 s 2 1 m 17.0 s

7 128 21 3 m 39.5 s 4 6 m 42.0 s

8 256 34 8 m 22.6 s 5 16 m 54.7 s

9 512 55 25 m 19.2 s 7 1 h 48 m 52.9 s

10 1024 89 1 h 9 m 27.0 s 5 2 h 9 m 5.1 s

on 1 Ghz PowerBook G4 Mac OS X 10.3.4 with gcc 3.3

page 13 of D


