
Parallel Homotopy Algorithms

to Solve Polynomial Systems

Jan Verschelde

Department of Math, Stat & CS
University of Illinois at Chicago
Chicago, IL 60607-7045, USA

eMail: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

Joint work with Anton Leykin and Yan Zhuang.

AMS session on Numerical Solving of Polynomial Systems

University of Notre Dame, 8-9 April 2006.

0. introduction

Motivation: solve large systems

Currently, large means > 100,000 solution paths are needed to

solve f(x) = 0 using start system g(x) = 0, defined by a typical

homotopy h(x, t) = 0:

h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C,

as t goes from 0 to 1.

• efficiency: undesirable to keep all solutions in main memory;

• numerical instabilities may occur as dimensions grow;

• quality control on the computed solutions.

Although “large” does not always automatically imply “difficult”,

size matters.

page 1 of 16

0. introduction

Other Parallel Homotopy Solvers

T. Gunji, S. Kim, K. Fujisawa, and M. Kojima:

PHoMpara – parallel implementation of the Polyhedral

Homotopy continuation Method for polynomial systems.

Research report b-419, Tokyo Institute of Technology, 2005.

H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson:

Algorithm 8xx: POLSYS GLP: A parallel general linear

product homotopy code for solving polynomial systems of

equations. To appear in ACM Trans. Math. Softw.

page 2 of 16

0. introduction

parallel PHCpack

initiated with Yusong Wang

• static and dynamic load balancing for cheater’s homotopy and
coefficient-parameter polynomial continuation;

• Pieri homotopies are well suitable despite their tree structure;
• main program in C calls MPI and phc: “mpi2phc”;
• good speedup for existing benchmark problems.

Distributing all path tracking jobs at the start performs well

when all paths require same amount of work,

otherwise dynamic load balancing is needed for best performance.

MPI = Message Passing Interface, a collection of library routines to

exchange data between nodes of a multicomputer.

page 3 of 16

0. introduction

current progress in PHCpack

with Anton Leykin: parallel monodromy breakup

(HPSEC’05, MAGIC’05, to appear in IJCSE)

with Yan Zhuang: parallel polyhedral homotopies

(see talk later in this session)

An ambitious Swap of Letters:

PHC = Polynomial Homotopy Continuation

HPC = High Performance Computing

towards High Performance Continuation

page 4 of 16

0. introduction

New Features in PHCpack (v2.3.07)

+ efficiency: jumpstarting homotopies

+ reliability: numerically stable fewnomial solver

+ quality control: scanning solution lists into frequency tables

internal: library between MPI main program and Ada core

page 5 of 16

1. jumpstart

Jumpstarting Homotopies

Problem: huge #paths (e.g.: > 100,000),

undesirable to store all start solutions in main memory.

Solution: (assume manager/worker protocol)

1. The manager reads start solution from file “just in time”

whenever a worker needs another path tracking job.

2. For total degree and linear-product start systems,

it is simple the compute the solutions whenever needed.

3. As soon as worker reports the end of a solution path

back to the manager, the solution is written to file.

page 6 of 16

1. jumpstart

Indexing Start Solutions

The start system

x4
1 − 1 = 0

x5
2 − 1 = 0

x3
3 − 1 = 0

has 4× 5× 3 = 60 solutions.

Get 25th solution via decomposition: 24 = 1(5× 3) + 3(3) + 0.
Verify via lexicographic enumeration:

000→001→002→010→011→012→020→021→022→030→031→032→040→041→042

100→101→102→110→111→112→120→121→122→ 130 →131→132→140→141→142

200→201→202→210→211→212→220→221→222→230→231→232→240→241→242

300→301→302→310→311→312→320→321→322→330→331→332→340→341→342

page 7 of 16

1. jumpstart

Using Linear-Product Start Systems Efficiently

• Store start systems in their linear-product product form, e.g.:

g(x) =

(· · ·) · (· · ·) · (· · ·) · (· · ·) = 0
(· · ·) · (· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) = 0

• Lexicographic enumeration of start solutions,
→ as many candidates as the total degree.

• Eventually store results of incremental LU factorization.
→ prune in the tree of combinations.

page 8 of 16

2. reliability

A well conditioned polynomial system

just one of the 11,417 start systems generated by polyhedral homotopies

12 equations, 13 distinct monomials (after division):

b1x5x8 + b2x6x9 = 0

b3x
2
2 + b4 = 0

b5x1x4 + b6x2x5 = 0

c
(k)
1 x1x4x7x12 + c

(k)
2 x1x6x

2
10 + c

(k)
3 x2x4x8x10 + c

(k)
4 x2x4x

2
11

+ c
(k)
5 x2x6x8x11 + c

(k)
6 x3x4x9x10 + c

(k)
7 x2

4x
2
12 + c

(k)
8 x3x6

+ c
(k)
9 x2

4 + c
(k)
10 x9 = 0, k = 1, 2, . . . , 9

Random coefficients chosen on the complex unit circle.

Despite the high degrees, only 100 well conditioned solutions.

page 9 of 16

2. reliability

Solve a “binomial” system xA = b via Hermite

Hermite normal form of A: MA = U , det(M) = ±1,
U is upper triangular, | det(U)| = | det(A)| = #solutions.

Let x = zM , then xA = zMA = zU , so solve zU = b.

n = 2:

[z1 z2]

�
�

�
�

u11 u12

0 u22

�
�

�
� = [b1 b2].

zu11

1 = b1

zu12

1 zu22

2 = b2

|bk| = 1⇒ |zi| = 1
numerically well conditioned

page 10 of 16

2. reliability

Reduce a “fewnomial” system CxA = b via LU

C = LU

assume det(C) 6= 0
⇒

(1) LUy = b linear system

(2) xA = y binomial system

This is a numerically unstable algorithm!

Randomly chosen coefficients for C and b on complex unit circle,

but still, varying magnitudes in y do occur.

High powers, e.g.: 50, magnify the imbalance

→ numerical underflow or overflow in binomial solver.

page 11 of 16

2. reliability

Separate Magnitudes from Angles

Solve xA = y via Hermite: MA = U ⇒ x = zM : zU = y.

z = |z|ez, ez = exp(iθz), y = |y|ey, ey = exp(iθy), i =
√
−1.

Solve zU = y: |z|UeU
z
= |y|ey ⇔

eU
z
= ey well conditioned

|z|U = |y| find magnitudes

To solve |z|U = |y|, consider: U log(|z|) = log(|y|).
Even as the magnitude of the values y may be extreme,

log(|y|) will be modest in size.

page 12 of 16

2. reliability

a numerically stable fewnomial solver

We solve CxA = b by

1. LU factorization of C → xA = y, where Cy = b.

2. Use Hermite normal form of A: MA = U , det(M) = ±1,
to solve binomial system eU

z
= ey, z = |z|ez, y = |y|ey.

3. Solve upper triangular linear system U log(|z|) = log(|y|).

4. Compute magnitude of x = zM via log(|x|) =M log(|z|).

5. As |ez| = 1, let ex = eM
z
.

Even as z may be extreme, we deal with |z| at a logarithmic scale
and never raise small or large number to high powers.

Only at the very end do we calculate |x| = 10log(|x|) and x = |x|ex.

page 13 of 16

3. quality

Quality Control: Scanning Solution Files

During runtime, we want to

1. monitor progress of a large path tracking job;

2. get an impression about the “quality” of the solutions which

have been already computed;

but again, we do not want store all solutions in main memory.

page 14 of 16

3. quality

Scanning Solution Files into Frequency Tables

Newton’s method reports for each solution:

1. the magnitude of the last update to the solution vector;

2. an estimate for the inverse condition number of the Jacobian

matrix at the solution;

3. the magnitude of the residual.

These three numbers determine the quality of a solution.

To determine the overall quality of the list of solutions,

the program builds frequency tables, e.g.: counting #solutions with

condition number between 10k−1 and 10k, for some range of k.

→ can be done with incomplete solution lists

page 15 of 16

Conclusions

Three issues to improve performance of parallel homotopies

• Avoid storing all solutions in main memory.

• Numerical stability matters even more.

• Fast quality control of large solution lists.

Computational results:

see talk of Yan Zhuang later in the session.

page 16 of 16

