
Parallel Numerical

Irreducible Decomposition

Jan Verschelde

Department of Math, Stat & CS
University of Illinois at Chicago
Chicago, IL 60607-7045, USA

email: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

Joint work with Anton Leykin (UIC).

Computational Complexity of Polynomial Factorization

American Institute of Mathematics, 15-19 May 2006.

introduction

Plan of the Talk

1. hybrid symbolic-numeric approach

→ homotopy continuation algorithms scale well

2. numerical irreducible decomposition

→ geometric representation ∼ lifting fibers

• NC class of algorithms

• transfer of technology from absolute factorization

3. two parallel algorithms

→ reorganized “monodromy breakup”

page 1 of 26

introduction

Solving Polynomial Systems

assumptions

Consider f(x) = 0, N equations in n variables . . .

• degrees of polynomials in f are low

• coefficients are approximate numbers in C

• floating-point approximations to solutions

• N = n: square systems, expect dim f−1(0) = 0

page 2 of 26

introduction

Numerical Homotopy Algorithms

1. deform f into a generic system g(x) = 0

2. define a homotopy, typically like

h(x, t) = γ(1− t)g(x) + tf(x) = 0,

γ ∈ C random ⇒ regular solution paths for all t: 0 ≤ t < 1

3. apply numerical path tracking algorithms

M. Shub and S. Smale. Complexity of Bézout’s Theorem I:

Geometric Aspects. J. Amer. Math. Soc. 6(2):459–501,1993.

page 3 of 26

introduction

Scalability for Parallel Computers

Work of Layne T. Watson & collaborators (1989, 1991, 1993)

→ one job = track one path.

Dynamic load balancing needed . . .

. . . when not all paths need same computational cost.

Joint work with Yusong Wang (HPSEC’04).

On our cluster with 14 cpu’s at 2.4Ghz . . .

. . . we can run about 100,000 paths “overnight”.

page 4 of 26

motivation

Equations for a Griffis-Duffy Platform

0.427419669081*e0 + 0.321110693270*e1 + 0.343633073697*e2 + 0.474256143563*e3 + 0.558458718976;

0.4754797951714257*e0^2 + 1.6317349621954614*e0*e3 + 0.9465211050062624*e1^2 - 0.9376441343330845*e2^2

- 0.4666028244982478*e3^2 + 2.55*g0*e1 + 0.2598076211353316*g0*e2 - 2.55*g1*e0 - 1.4722431864335457*g1*e3

- 0.2598076211353316*g2*e0 + 0.45*g2*e3 + 1.4722431864335457*g3*e1 - 0.45*g3*e2;

- 0.2385669606907614*e0^2 + 3.2634699243909228*e0*e3 + 1.6455982786485855*e1^2 - 3.2634699243909228*e1*e2

- 0.2385669606907614*e2^2 + 1.6455982786485855*e3^2 + 3*g0*e1 + 0.5196152422706632*g0*e2 - 3*g1*e0

- 2.9444863728670914*g1*e3 - 0.5196152422706632*g2*e0 + 3*g2*e3 + 2.9444863728670914*g3*e1 - 3*g3*e2;

- 0.3961611384685069*e0^2 + 4.8952048865863842*e0*e3 - 0.3961611384685069*e1^2 - 4.8952048865863842*e1*e2

+ 2.4300867205405135*e2^2 + 2.4300867205405135*e3^2 + 1.95*g0*e1 - 1.8186533479473212*g0*e2 - 1.95*g1*e0

- 1.8186533479473212*g1*e3 + 1.8186533479473212*g2*e0 + 4.05*g2*e3 + 1.8186533479473212*g3*e1 - 4.05*g3*e2;

1.2028336489822089*e0^2 + 3.2634699243909228*e0*e3 + 0.2607510293125354*e1^2 + 4.0290815079912293*e2^2

+ 3.0869988883215558*e3^2 + 1.95*g0*e1 - 2.3382685902179843*g0*e2 - 1.95*g1*e0 + 1.1258330249197702*g1*e3

+ 2.3382685902179843*g2*e0 + 4.05*g2*e3 - 1.1258330249197702*g3*e1 - 4.05*g3*e2;

0.8849480315885287*e0^2 + 1.3559893414233654*e1^2 + 1.6317349621954614*e1*e2 + 2.2980719610930389*e2^2

+ 2.7691132709278756*e3^2 + 0.45*g0*e1 - 0.2598076211353316*g0*e2 - 0.45*g1*e0 + 1.4722431864335457*g1*e3

+ 0.2598076211353316*g2*e0 + 2.55*g2*e3 - 1.4722431864335457*g3*e1 - 2.55*g3*e2;

g0*e0+g1*e1+g2*e2+g3*e3;

g0^2+g1^2+g2^2+g3^2-e0^2-e1^2-e2^2-e3^2;

page 5 of 21

motivation

Irreducible Factor = Assembly of Platform

page 6 of 26

motivation

Adjacent minors of a general 2-by-(n + 1) matrix

n = 3 :





x11 x12 x13 x14

x21 x22 x23 x24



 f(x) =















x11x22 − x21x12 = 0

x12x23 − x22x13 = 0

x13x24 − x23x14 = 0

P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice walks and

primary decomposition. In Mathematical Essays in Honor of

Gian-Carlo Rota, ed. B.E. Sagan and R.P. Stanley, pages 173–193,

Birkhäuser, 1998.

S. Hoşten and J.Shapiro. Primary decomposition of lattice basis

ideals. J. Symbolic Computation 29(4&5): 625–639.

page 7 of 26

motivation

Challenge in Computational Algebraic Geometry

O. Holtz and B. Sturmfels. Hyperdeterminantal relations among

symmetric principal minors. arXiv:math.RA/0604374 v1.

The principal minors of a real symmetric 4-by-4 matrix form a

vector of length 24 and satisfy the hyperdeterminantal relations of

format 2× 2× 2 (derived from Schur’s identity).

→ 8 equations in 16 unknowns

product of the degrees is 122,880 . . .

page 8 of 26

motivation

Absolute Factorization

“Given is a polynomial f(x, y) ∈ Q[x, y] and ε ∈ Q. Decide in
polynomial time in the degree and coefficient size if there is a

factorizable f̂(x, y) ∈ C[x, y] with ||f − f̂ || ≤ ε, for a reasonable

coefficient vector norm ||.||.”

Erich Kaltofen (JSC 29, 2000) (originally in Kaltofen, 1992)

Recent Work: new symbolic-numeric algorithms by

• T. Sasaki, T. Saito, T. Hilano (1992); T. Sasaki (2001)

• A. Galligo, D. Rupprecht (2001); G. Chèze, A. Galligo (2003)

• R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas,

S.M. Watt (2001)

• A.J. Sommese, J. Verschelde, C.W. Wampler (2001, 2002, 2004)

• S. Gao, E. Kaltofen, J. May, Z. Yang, L. Zhi (2004)

page 9 of 26

motivation

complexity class NC

NC is the class of functions computable by logspace-uniform

boolean circuits of polynomial size and polylogarithmic depth.

E. Kaltofen. Fast parallel absolute irreducibility testing.

JSC 1985.

→ NC algorithm for absolute factorization

C. Bajaj, J. Canny, T. Garrity, J. Warren. Factoring rational

polynomials over the complex numbers.

ISSAC 1989, SICOMP 1993.

→ this is a topological problem, not an algebraic one

page 10 of 26

representations

Representations: ε-gcd and δ-gcd

following Victor Pan 2001

Consider two univariate polynomials p, q ∈ C[x]

• with approximate coefficients;

• with approximate roots.

GCD h(x) satisfies h(x) = k(x)p(x) + l(x)q(x)

δ-gcd: match roots of p and q

find k(x) and l(x) via interpolation

ε-gcd: rank revealing on Sylvester matrix

Zhonggang Zeng (ISSAC 2003)

δ-gcd ≈ ε-gcd modulo conditioning, otherwise δ-gcd 6= ε-gcd.

page 11 of 26

representations

Geometric View on an Algebraic Set V

When we cut V with dim(V) many generic hyperplanes L,

we find deg(V) many regular isolated solutions in V ∩ L.

Geometric Representations of V :

• exact: lifting fibers

(M. Giusti, G. Lecerf, and B. Salvy, 2001)

• numerical: witness set

(A.J. Sommese, J. Verschelde, C.W. Wampler, 2003)

page 12 of 26

monodromy

The Riemann Surface of z − w3 = 0:

-2

-1

0 Re(z)

1-1.5
-2

-1

-1

-0.5

Re(z^1/3)

0

0

1
2

0.5

2Im(z)

1

1.5

Loop around the singular point (0,0) permutes the points.

page 13 of 26

monodromy

Generating Loops by Homotopies

WL represents a k-dimensional solution set of f(x) = 0, cut out by

k random hyperplanes L. For k other hyperplanes K, we move WL

to WK , using the homotopy hL,K,α(x, t) = 0, from t = 0 to 1:

hL,K,α(x, t) =





f(x)

α(1− t)L(x) + tK(x)



 = 0, α ∈ C.

The constant α is chosen at random, to avoid singularities, as t < 1.

To turn back we generate another random constant β, and use

h
K,L,β(x, t) =





f(x)

β(1− t)K(x) + tL(x)



 = 0, β ∈ C.

A permutation of points in WL occurs only among points on the

same irreducible component.

page 14 of 26

monodromy

Linear Traces as Stop Criterium

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve







y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.

Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.

If 6=, then samples come from irreducible curve of degree > 3.

page 15 of 26

monodromy

Linear Traces – an example

f−1(0)
x0

s
y00

s
y01

s
y02

x1

s
y10

s
y11

s
y12

x2

s
y20

s
y21

s
y22

Use {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}

to find the linear trace t1(x) = c0 + c1x.

At {(x2, y20), (x2, y21), (x2, y22)}: c0 + c1x2 = y20 + y21 + y22?

page 16 of 26

monodromy

Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!

page 17 of 26

monodromy

Computational results on adjacent minors

n d #f witness set #loops factorization

3 8 3 1.4 s 9 6.8 s

4 16 5 4.5 s 3 9.4 s

5 32 8 23.9 s 4 41.6 s

6 64 13 56.4 s 2 1 m 17.0 s

7 128 21 3 m 39.5 s 4 6 m 42.0 s

8 256 34 8 m 22.6 s 5 16 m 54.7 s

9 512 55 25 m 19.2 s 7 1 h 48 m 52.9 s

10 1024 89 1 h 9 m 27.0 s 5 2 h 9 m 5.1 s

on 1 Ghz PowerBook G4 Mac OS X 10.3.4 with gcc 3.3

page 18 of 26

monodromy

Monodromy Breakup certified by Linear Traces

Input: WL, d, N witness set, degree, #loops

Output: P partitioned witness set

0. initialize P with d singletons; done by manager

1. generate two slices L′ and L′′ parallel to L; broadcast data to nodes

2. track d paths for witness set with L′; executed in parallel

3. track d paths for witness set with L′′; executed in parallel

4. for k from 1 to N do

4.1 generate new slices K and a random α; broadcast K and α

4.2 track d paths defined by hL,K,α(x, t) = 0; executed in parallel

4.3 generate a random β; broadcast β to nodes

4.4 track d paths defined by hK,L,β(x, t) = 0; executed in parallel

4.5 compute the permutation and update P; done by manager

4.6 exit when linear trace test certifies P.

page 19 of 26

performance

A Benchmark Example: cyclic 8-roots

The system

f(x) =















fi =
7

∑

j=0

i
∏

k=1

x(k+j)mod 8 = 0, i = 1, 2, . . . , 7

f8 = x0x1x2x3x4x5x6x7 − 1 = 0

has 1152 isolated solutions and a solution curve of degree 144,

which breaks up into 16 irreducible factors.

There are 8 factors of degree 16, and 8 quadratic factors.

Our equipment consists of one workstation with two dual 2.4Ghz

processors, running Linux, and serving two Rocketcalc clusters: one

with four and an other with eight 2.4Ghz processors. So we have a

total of 14 processors: a manager and 13 workers.

page 20 of 26

performance

Computational Results (HPSEC’05)

• Fluctuations in work loads and influence of number of loops needed:

#L 4 5 6 7 7 7 7 7 8 9

min 6.0 7.8 9.2 10.1 10.3 10.9 10.9 10.7 11.8 12.3

max 9.9 11.5 12.8 15.4 15.1 14.7 14.1 14.5 16.3 16.9

total 11.7 14.9 16.9 19.2 19.3 19.5 19.7 20.3 21.9 23.4

Results of 10 runs on 14 processors. #L = number of loops, min and max

are the minimal and maximal time (in seconds) spent by the worker nodes.

• Speedup:

NP 2 3 4 5 6 7 8 9 10 11 12 13 14

min — 68.7 47.4 31.5 25.8 21.5 20.0 18.0 14.8 12.1 11.7 11.2 10.9

max 144.3 69.2 48.6 33.6 28.0 25.3 22.0 20.1 18.8 17.6 16.2 14.7 14.1

total 150.9 77.1 56.5 41.4 35.7 32.5 29.1 27.3 25.9 22.3 21.7 20.2 19.7

Execution times for number of processors NP, from 2 to 14, using 7 loops.

page 21 of 26

performance

Performance of a First Parallel Implementation

2

150.9

3

77.1

4

56.5

5

41.4

6

35.7

7

32.5

8

29.1

9

27.3

10

25.9

11

22.3

12

21.7

13

20.2

14

19.7

Height of the bars = time expressed in seconds.

Shaded top area = time spent by manager.

Lowest horizontal bar = minimal time spent by worker.

Number of Processors

page 22 of 26

The New Algorithm – Serial Version

P := {{a} | 1 ≤ a ≤ d, {a} is not a component};

Q := {f | f ⊂ {1, 2, . . . , d} is a certified irreducible factor};

construct s witness sets using s random slices;

construct the trace grid, for 2 parallel slices;

Ntot := s× d + 2× d; Nreg := 0;

The initialization requires (s+ 2)d paths

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

P := {{a} | 1 ≤ a ≤ d, {a} is not a component};

Q := {f | f ⊂ {1, 2, . . . , d} is a certified irreducible factor};

construct s witness sets using s random slices;

construct the trace grid, for 2 parallel slices;

Ntot := s× d + 2× d; Nreg := 0;

?

yes

no

?

On return is a certified factorization,

and path tracking statistics.

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

?
yes

no

Use path tracking statistics to

discriminate against nonproductive slices.

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

?

?

yes

no

Track a path to close a loop.

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q 6= p?

-

Nreg := Nreg + 1;

?

?

?

?

no

yes

no

If no permutation occurred,

then we regret the effort.

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q 6= p?

-

-

merge p and q:

P := P ∪ {p ∪ q};

P := P \ {p, q};

Nreg := Nreg + 1;

?

?

?

?

no

yes

yes

no

If a permutation occurred,

then p and q are joined.

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q 6= p?

-

-

merge p and q:

P := P ∪ {p ∪ q};

P := P \ {p, q};

is p ∪ q irreducible?

Nreg := Nreg + 1;

?

?

?

?

?

no

yes

no

yes

no

If the linear trace test

fails to certify p ∪ q,

then more loops are needed.

page 23 of 26

#P 6= 0? - return (Q, Ntot, Nreg).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q 6= p?

-

-

merge p and q:

P := P ∪ {p ∪ q};

P := P \ {p, q};

is p ∪ q irreducible?

P := P \ {p ∪ q};

Q := Q ∪ {p ∪ q};Nreg := Nreg + 1;

?

?

?

?

?

?

no

yes

yes

no

yes

no

found new

irreducible

factor

page 23 of 26

new algorithm

The New Algorithm – Parallel Version

Using a manager/worker model:

• Initialization phase involves the distribution of d paths,

for the s new witness sets and trace grid.

Manager distributes jobs to path tracking nodes i, i > 0.

• After initialization:

Manager keeps looking for available nodes to assign paths.

Other nodes are either busy or ready to start new jobs.

Compared to the first parallel implementation, this algorithm

interleaves the computation of the linear trace by the manager with

the distribution of path tracking jobs.

page 24 of 26

Performance on cyclic 8-roots

Five runs using 14 processors (recall 19.7 seconds):

3 new slices 2 new slices

#runs 1 2 3 4 5

initial 8.73 9.01 8.89 6.54 6.98

manager 6.06 6.22 6.18 6.67 7.10

min track 5.96 6.16 6.07 6.60 7.02

max track 6.06 6.24 6.23 6.11 7.15

total 14.9 15.4 15.3 13.4 14.2

We report the time used for initialization, the time spent by the

manager node, the minimal and maximal time for the nodes spent

tracking paths, and the total time, all expressed in seconds.

page 25 of 26

Conclusions (to appear in IJCSE)

• The new parallel monodromy breakup algorithm shows an even

distribution of the time spent by the nodes.

• Using fewer slices reduces initialization time at the expense of a

higher running time in main loop.

• Compared to the first parallel implementation, the new

algorithm shows a more predictable and regular performance.

• On larger examples, e.g. factoring a 10-dimensional surface of

degree 256 in C18, the new algorithm still takes only 80% of the

very best time of the first parallel implementation.

page 26 of 26

