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Problems we want to solve

Homotopy methods to solve polynomial systems
are “pleasingly parallel”:

the solution paths can be tracked independently;

scale very well for a large number of processors.
� enumerate solutions one after the other

What are we solving?

large systems in families of benchmark problems such as
katsura, economics, adjacent minors;

systems with more than 100,000 solutions;

optimal case (no diverging paths).
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The Total Degree Homotopy

Solve�
x2

1 � x2 � 3 � 0

x1 � 0 � 125x2
2 � 1 � 5 � 0

by considering a simpler system �
x2

1 � 1 � 0

x2
2 � 1 � 0

� �
� �
	 �

start system

� �
� ��	 �

target system

in a homotopy

t �� � 1 � t ��� 0

where t goes from 0 to 1, and ���� is a random constant.

For almost all choices of ��� � , every isolated solution
of multiplicity m is reached by exactly m solution paths.

also called “the gamma trick”

If we take  � 1, then at t � 0 � 92 singular solutions occur.
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running total degree homotpies

Katsura systems: n quadrics and one linear equation,
#solutions is 2n. Running on the NCSA machine Tungsten,
using p processors, for n � 20: 1,048,576 paths:

p time min max
16 22h47m 68,088 70,966
32 9h22m 33,329 34,113
64 4h44m 16,269 16,917

128 2h25m 7,199 8,639
256 1h16m 4,525 3,731

The table lists the total time and the minimum and maximum
number of paths tracked by each worker node.
Different homotopy constants cause fluctuations.

Yun Guan and Jan Verschelde Parallel Implementation of a Subsystem-by-Subsystem Solver



Problem Statement
Introduction

Parallel Implementation of the Solver
Summary

running total degree homotpies

Katsura systems: n quadrics and one linear equation,
#solutions is 2n. Running on the NCSA machine Tungsten,
using p processors, for n � 20: 1,048,576 paths:

p time min max
16 22h47m 68,088 70,966
32 9h22m 33,329 34,113
64 4h44m 16,269 16,917

128 2h25m 7,199 8,639
256 1h16m 4,525 3,731

The table lists the total time and the minimum and maximum
number of paths tracked by each worker node.
Different homotopy constants cause fluctuations.

Yun Guan and Jan Verschelde Parallel Implementation of a Subsystem-by-Subsystem Solver



Problem Statement
Introduction

Parallel Implementation of the Solver
Summary

running total degree homotpies

Katsura systems: n quadrics and one linear equation,
#solutions is 2n. Running on the NCSA machine Tungsten,
using p processors, for n � 20: 1,048,576 paths:

p time min max
16 22h47m 68,088 70,966
32 9h22m 33,329 34,113
64 4h44m 16,269 16,917

128 2h25m 7,199 8,639
256 1h16m 4,525 3,731

The table lists the total time and the minimum and maximum
number of paths tracked by each worker node.
Different homotopy constants cause fluctuations.

Yun Guan and Jan Verschelde Parallel Implementation of a Subsystem-by-Subsystem Solver



Problem Statement
Introduction

Parallel Implementation of the Solver
Summary

Witness Sets
Diagonal Homotopy
Parallel Diagonal Homotopy
Subsystem-by-Subsystem Solver

Witness Sets

Numerical representations of positive dimensional solution
sets of polynomial systems.

A k -dimensional solution set of degree d is represented by
1 k general hyperplanes; and
2 d isolated solutions on those k hyperplanes.

Witness sets are computed either
1 top down: via a cascade of homotopies; or
2 bottom up: diagonal homotopies intersect witness sets.

Once solution sets of different dimensions are separated
as different witness sets, with monodromy and traces we
compute a numerical irreducible decomposition.
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References for Witness Sets

A.J. Sommese and C.W. Wampler:
Numerical algebraic geometry. In The Mathematics of
Numerical Analysis, pages 749–763, AMS 1996.

A.J. Sommese and J. Verschelde:
Numerical homotopies to compute generic points on
positive dimensional algebraic sets.
Journal of Complexity 16(3):572-602, 2000.

A.J. Sommese, J. Verschelde, and C.W. Wampler:
Numerical Decomposition of the Solution Sets of
Polynomial Systems into Irreducible Components.
SIAM J. Numer. Anal. 38(6):2022-2046, 2001.
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References for Diagonal Homotopies

A.J. Sommese, J. Verschelde, and C.W. Wampler:
Homotopies for intersecting solution components of
polynomial systems.
SIAM J. Numerical Anal. 42(4):1552-1571, 2004.

A.J. Sommese, J. Verschelde, and C.W. Wampler:
An intrinsic homotopy for intersecting algebraic
varieties. J. Complexity 21(3):593-608, 2005.

A.J. Sommese and C.W. Wampler: The Numerical
Solution of Systems of Polynomials Arising in
Engineering and Science. World Scientific Press, 2005.
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What does a diagonal homotopy do?
input/output specification

Input: two irreducible components A and B
given by two witness sets:

Witness Set for A Witness Set for B�
fA � x ��� 0
LA � x ��� 0

�
fB � x ��� 0
LB � x ��� 0�

LA � dim(A)=a
�
LB � dim(B)=b���

1 � � 2 � � � � � � deg � A �	� ��

1 � 
 2 � � � � � 
 deg � B ���

Output: witness sets for all pure dimensional components of A  B
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What does diagonal homotopy do?
a special case

1 Solution pairs start a cascade of homotopies.
2 Hyperplanes are removed one by one in the cascade.

Special case: A and B are complete intersections, stored as� �
x ��� n � fA � x ��� 0 � LA � x � � 0 � � deg � A � ,� �
y ��� n � fB � y ��� 0 � LB � y � � 0 � � deg � B � , and dim � A  B ��� 0,

then the diagonal homotopy is

h � x � y � t ���
���� fA � x ��� 0 � fB � y ��� 0

� 1 � t ��� LA � x �
LB � y ��� � t � x � y � � 0 �

starting at the deg � A �
	 deg � B � solutions in A 	 B � � n � n .

At t � 1, we find solutions at the diagonal x � y, in A  B.
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Parallel Diagonal Homotopy

Runs in various stages: every stage removes one
hyperplane in the cascade of homotopies.

Currently we use the extrinsic version
of the diagonal homotopy.

For memory efficiency, jumpstarting homotopy:

1 The manager computes a start solution or reads it from file
“just in time” whenever a worker needs a path tracking job.

2 As soon as a worker finishes tracking a path,
the solution is written to file.
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An Illustration

Assume two witness sets are completed, each has degree 4.
Using 5 workers:
manager workers
path 1 to node 1 (1,1) node 1 receives path 1
path 2 to node 2 (1,2) node 2 receives path 2
path 3 to node 3 (1,3) node 3 receives path 3
path 4 to node 4 (1,4) node 4 receives path 4
resetting file for witness set 2
path 5 to node 1 (2,1) node 1 receives path 5
path 6 to node 2 (2,2) node 2 receives path 6
path 7 to node 3 (2,3) node 3 receives path 7
path 8 to node 4 (2,4) node 4 receives path 8
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path 5 to node 1 (2,1) node 1 receives path 5
path 6 to node 2 (2,2) node 2 receives path 6
path 7 to node 3 (2,3) node 3 receives path 7
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Extension of Previous Work

A.J. Sommese, J. Verschelde, and C.W. Wampler:
Solving Polynomial Systems Equation by Equation.
To appear in the IMA Volume 146 on Algorithms in
Algebraic Geometry. Springer, 2007.

The equation-by-equation solver is a limiting case
of the subsystem-by-subsystem approach.

Here we apply the diagonal homotopy
in a more flexible way.
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Divide and Conquer

Schematic overview of solving a system of eight quadrics.
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Assume homotopy is optimal: no diverging paths.
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Data Structures

The triangular state table
1 ..... ..... .....
2 ..... .....
3 .....
4 .....
5
6
7
8
of completed jobs

Queue of jobs
... job 4 job 3 job 2 job 1

Queue of idle workers
... worker 3 worker 2 worker 1

One job
2 1 2 1 2 3 4 2
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Initial Job Distribution

manager worker

broadcast file name � receive file name file with equations

send data � receive data data =
solve equation equation indices
write to file terminated by 0

receive data � send data synchronization
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Job Scheduling: the main loop

Runs in
�
log2 � n ��� stages, n � #equations.

Homotopies in stage k involve 2k equations.

The manager maintains the state table, the job queue,
and the queue of idle workers.
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Job Scheduling: main loop, a picture
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Job Scheduling: main loop, continued
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Job Scheduling: main loop, finally
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Software & Equipment

Diagonal homotopies are available in PHCpack.
http://www.math.uic.edu/˜jan/download.html

1 Parallel code uses and improves sequential versions.

2 PHClib forms interface with PHCpack as library.

3 Main parallel programs use MPI for communication.

Computers used:
Software development on personal cluster:

1 One workstation with two dual 2.4Ghz processors.
2 Two Rocketcalc clusters: one with four and

an other with eight 2.4Ghz processors.

NCSA Tungsten cluster is a supercomputer:
1280 3.2GHz processors, running Linux.
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Complexity of Job Scheduling

Job scheduling uses dynamic load balancing.
Some additional concerns:

There must be sufficient points in both witness sets in
order to intersect a pair of witness sets.

New jobs can be formed only when a pair of witness points
are completed.

The solutions for the second witness set are arriving much
slower than those for the first witness set.

Synchronization currently prevents optimal speedup.
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Solving katsura8
on a 2.4Ghz Rocketcalc personal cluster

p time max min
2 459s 1,408 1,408
3 277s 787 621
4 175s 514 391
5 140s 375 289
6 104s 307 240
7 98s 251 207
8 86s 218 173
9 85s 193 147
10 81s 167 132
11 72s 152 124
12 68s 147 110

p � 2: 1 worker

double #workers (1,2,4,8):
p � 2 � 3 � 5 � 9

time: 459s
� 277s
� 140s
� 85s
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Summary

parallel diagonal homotopy allows jumpstarting
for efficient memory management

dynamic load balancing leads to acceptable speedup

synchronization along stages gives overhead
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