
PHCpack: A Software Library for

Polynomial Homotopy Continuation

Jan Verschelde

Department of Math, Stat & CS
University of Illinois at Chicago
Chicago, IL 60607-7045, USA

email: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

10 May 2007, Maplesoft



Outline

A. functionality

root counts for sparse and dense systems

platform for numerical algebraic geometry

B. modular design

organization of the code into directories

6 layers built on top of each other

C. interfaces

interactive menus allow scripts in PHCmaple and PHClab

simple use c2phc interface made for use with MPI

page 2 of ∞



functionality

A. Functionality of PHCpack

• As blackbox solver: phc -b input output, or use phc -a.

• Toolbox, for example, as phc -b runs in four stages:

1. phc -s: coefficient and equation scaling

2. phc -r: root counting and start system construction

3. phc -p: track paths defined by homotopy

4. phc -v: refine roots and deflate singularities

• On multiprocessor machines: mpirun -np 8 mpi2track.

page 1 of A



functionality

Building phc

• the software is self contained

• compiles with gcc (gnu-ada compiler)

• make phc works for

1. Linux (mainly debian)

2. Windows 2000

3. Sun Solaris

4. IBM AIX

5. MacOS PPC

• alternative compilers: Rational, Aonix, Janus

page 2 of A



functionality

Homotopy Continuation

Homotopy methods create a family of systems, a so-called

homotopy. Typically, to solve f(x) = 0, we construct a start

system g(x) = 0 and consider for some random constant γ ∈ C:

h(x, t) = γ(1− t)g(x) + tf(x) = 0, for t going from 0 to 1.

Continuation methods are used to track the paths x(t) defined

by the homotopy h(x(t), t) = 0. Typically, for a “good”

homotopy, singular solutions occur only as t ≈ 1.

The input coefficients are considered as approximate numbers in C.

By default, all calculations are done with hardware double

precision floating-point numbers.

page 3 of A



functionality

Dense Polynomial Systems

Oversimplifying, looking at n equations in n unknowns defined by

f = (f1, f2, . . . , fn), we assume that

• Dense systems are expected to have as many isolated solutions

as predicted by the (multihomogeneous) theorem of Bézout.

• Then the start system g(x) = 0 is






























xd1

1
− c1 = 0 d1 = deg(f1)

xd2

2
− c2 = 0 d2 = deg(f2)
...

...

xdn

n − cn = 0 dn = deg(fn),

with random ci ∈ C.

Or, more generally, every equation in g is a product of linear

polynomials. Then we call g a linear-product start system.

page 4 of A



functionality

Sparse Polynomial Systems

Continuing the oversimplification, still looking at n equations in n

unknowns defined by f = (f1, f2, . . . , fn), we assume that

• Sparse systems have fewer roots than in the dense case.

Bernshtěın’s theorem states that the mixed volume of the

Newton polytopes of f bounds the number of isolated solutions

in (C \ {0})n.

• Polyhedral homotopies are used to solve a system g(x) = 0

with the same Newton polytopes as f and exactly as many

regular solutions as the mixed volume.

For many applications, computing mixed volumes is much easier

than tracking that many solution paths. As a general strategy,

phc -b computes both Bézout bounds and the mixed volume.

page 5 of A



functionality

Witness Sets

Consider N equations f = (f1, f2, . . . , fN ) in n unknowns.

Suppose f(x) = 0 has k-dimensional solution set V .

Choose k hyperplanes L with random complex coefficients.

Solve F (x) =







f(x) = 0

L(x) = 0.

observe:

F (z) = 0 ⇒ z ∈ V ∩ L

moreover:

deg(V ) = #{ z ∈ Cn | F (z) = 0 }.

A witness set WL for V consists in F = (f, L) and F−1(0).

page 6 of A



functionality

Solving Overdetermined Polynomial Systems

• embedding

E(f)(x, z) =















f1(x1, x2) + γ1z = 0

f2(x1, x2) + γ2z = 0

c0 + c1x1 + c2x2 + z = 0

z is a slack variable

#slacks = dimension

γ1, γ2, c0, c1, c2 ∈ C are random numbers

• cascade

h(x, z, t) = (1− t)E(f)(x, z) + t























f1(x1, x2) + γ1z = 0

f2(x1, x2) + γ2z = 0

z = 0









.

The cascade starts at the top dimension. Solutions with z 6= 0

are regular and are the start solutions for h(x, z, t) = 0.

page 7 of A



functionality

Filtering and Factoring

• membership test

Given point p ∈ Cn and witness set WL for V , does p ∈ V ?

h(x, t) = (1− t)





f(x)

L(x)



 + t





f(x)

L(x)− L(p)



 = 0.

Test: p ∈ V ∩ L′? where L′ = L− L(p).

• monodromy loops

Consider two witness sets WL and WK for V and the homotopy

h(x, γ, t) = γ(1− t)





f(x)

L(x)



 + t





f(x)

K(x)



 = 0.

Choose γ = α for t going from 0 to 1 and let γ = β for t going

from 1 to 0. Points on same irreducible component permute.

page 8 of A



functionality

diagonal homotopies and phc -a

In C3, given two witness sets WA and WB for two 2-dimensional

sets A and B, cut out respectively by by LA1, LA2 and LB1, LB2.

Consider h(x, t) =

(1− t)



























fA(u1, u2, u3) = 0

fB(v1, v2, v3) = 0

LA1(u1, u2, u3) = 0

LA2(u1, u2, u3) = 0

LB1(v1, v2, v3) = 0

LB2(v1, v2, v3) = 0



























+ t



























fA(u1, u2, u3) = 0

fB(v1, v2, v3) = 0

u1 − v1 = 0

u2 − v2 = 0

u3 − v3 = 0

LAB(u1, u2, u3) = 0



























.

As t goes from 0 to 1, the deformation starts at pairs

(α, β) ∈ A×B, where α and β are witness point on A and B.

At t = 1 we find witness points on the curve of intersection.

page 9 of A



functionality

Welcome to PHC (Polynomial Homotopy Continuation) V2.3.26 1 May 2007

Running in full mode. Note also the following options:

phc -0 : random numbers with zero seed for repeatable runs

phc -a : Solving polynomial systems equation-by-equation

phc -b : Batch or black-box processing

phc -c : Irreducible decomposition for solution components

phc -d : Linear and nonlinear Reduction w.r.t. the total degree

phc -e : SAGBI/Pieri homotopies to intersect linear subspaces

phc -f : Factor pure dimensional solution set into irreducibles

phc -k : realization of dynamic output feedback placing poles

phc -l : Witness Set for Hypersurface cutting with Random Line

phc -m : Mixed-Volume Computation via lift+prune and MixedVol

phc -p : Polynomial Continuation by a homotopy in one parameter

phc -q : Tracking Solution Paths with incremental read/write

phc -r : Root counting and Construction of start systems

phc -s : Equation and variable Scaling on system and solutions

phc -v : Validation, refinement and purification of solutions

phc -w : Witness Set Intersection using Diagonal Homotopies

phc -z : strip phc output solution lists into Maple format

Options may be combined, e.g.: phc -b -0 or phc -0 -b.

page 10 of A



organization

B. Programming Style

• PHCpack is written in Ada

• chosen C for recent main programs, calling Ada code:

1. routines for pole placement, with Yusong Wang

2. parallel factorization, with Anton Leykin

3. parallel polyhedral homotopies, with Yan Zhuang

• key tool is “package” to implement

libraries: as in classic mathematical software libraries;

classes: object oriented programming.

A package has a specification (interface) and a body

(implementation) in two separate files.

Version 1.0 of PHCpack was developed in Ada 83 (archived by

ACM TOMS), rewritten using Ada 95, released as version 2.

page 1 of B



organization

Modular Structure of PHCpack

• The experimental computational laboratory aspect of PHCpack

implies that several alternative methods coexist.

Often useful for independent verification and testing.

• The code is organized in a hierarchy of directories.

Every directory (or “module”) targets a specific function:

e.g.: path following, mixed volumes, etc.

• Each module contains

1. packages to implement classes or libraries;

2. interactive programs to test the packages;

3. driver routines called by the main program.

page 2 of B



organization

Testing Strategies

The testing of the code happens at three levels:

in the small: relative small test programs allow the user to given

specific input or generate random inputs

in each module: drivers organize the functions offered by the

packages in a module, accessible via menus

at the large: do phc -b on a large collection of “demo”

polynomial systems with known output (benchmarking)

page 3 of B



organization

Six Layers in PHCpack

1. Basic Data Structures and Operations

2. Homotopy, Newton, and Continuation

3. Root Counts and Start Systems

4. Numerical Schubert Calculus

5. Tools for a numerical irreducible decomposition

6. Interfaces, Main program, and use of MPI

page 4 of B



organization

Modular Design: the directories

1

2

3

4

5

6

1

2

3

4

5

6

System

Math Lib:

Numbers Matrices Polynomials Supports

Homotopy Newton Continuation

Root Counts:

Product Fewnomials Implift Stalift Dynlift Symmetry MixedVol

SAGBI Pieri Induction

Components:

Samplers Interpolators Factorization Decomposition Solver

CtoPHC Main Lib MPI

page 5 of B



organization

1. Basic Data Structures and Operations

The System module contains facilities to time programs. Different

makefiles pick different timers, depending on Windows or not.

The mathematical library makes PHCpack self contained.

features: linear algebra and efficient polynomial evaluation over

general number fields, mainly in floating point arithmetic.

in progress: more robust parsing of the input from file and from

strings, also Laurent polynomials (negative exponents)

accepted on input

plans: integrate ATLAS, LAPACK, and faster multiprecision

arithmetic; apply methods from algorithmic differentiation

page 6 of B



organization

2. Homotopy, Newton, and Continuation

The secondary main data structure is a polynomial system with a

corresponding list of solutions to define a start system. Newton’s

method is the basic validation tool, recently augmented with

deflation, and it is used as corrector in path following methods.

features: a collection of path following methods independent of

the kind of homotopy

in progress: 1. integrate deflation into the main solvers

2. deal with quadratic turning points in a real sweep

plans: apply Smale’s α-theory to compute certificates

page 7 of B



organization

3. Root Counts and Start Systems

A root count bounds the number of expected isolated solution.

Based on the root count, a start system that has exactly as many

regular solutions as the root counted is constructed and solved.

features: linear-product start systems for dense and polyhedral

methods for sparse systems, recently started incorporation of

MixedVol (ACM TOMS Algorithm 845), developed by Tangan

Gao, Tien-Yien Li, Xing Li, and Mengnien Wu

in progress: efficient evaluation of linear-product systems;

improved numerical stability of the polyhedral homotopies

plans: exploit structure when dealing with solution sets

page 8 of B



organization

4. Numerical Schubert Calculus

Enumerative geometry is a classical branch of algebraic geometry.

Pieri gave a geometric proof of Bézout’s theorem.

features: Pieri homotopies solve the output pole placement

problem of linear systems control

in progress: implementation of Littlewood-Richardson

homotopies based on Ravi Vakil’s recent geometric proof

plans: efficient numerical tools to deal with determinantal

equations

page 9 of B



organization

5. Tools for a numerical irreducible decomposition

Numerical algebraic geometry aims to relate to algebraic geometry

as numerical linear algebra to linear algebra.

features: witness sets computed via homotopy cascade;

monodromy certified by linear traces factors pure dimensional

solution sets into irreducible components; diagonal homotopies

to intersect witness sets; an equation-by-equation solver

in progress: 1. parallel implementation of

subsystem-by-subsystem solver

2. apply deflation for singular solution sets

plans: find exceptional sets of solutions for specific parameters

page 10 of B



organization

6. Interfaces, Main program, and use of MPI

PHCpack leads to a menu driven and file oriented program phc.

Using MPI has led to a programmer’s interface to PHCpack.

features: interactive menus and tools used via scripts in

PHCmaple and PHClab

in progress: bring structure to the C library of wrappers around

use c2phc; Python interface

plans: enable wider and flexible use of PHCpack; better and more

adequate documentation

page 11 of B



interfaces

C. Interfaces to PHCpack

1. scripts walk through menus of phc

thanks to Nobuki Takayama (OpenXM) for this idea

2. C program prepares input, then calls Ada program

after computations, call C program to process results

3. but a third interface is needed to implement parallel programs

using MPI in a good way

page 1 of C



interfaces

Applying Program Inversion to Homotopy Solver

h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C, t ∈ [0, 1].

Input: g(x) = 0;

for k from 1 to #g−1(0) do

compute yk: g(yk) = 0;

end for;

output: g−1(0).

solve start system

-

track paths to target

Input: g−1(0), h(x, t) = 0;

for k from 1 to #g−1(0) do

path starts at yk ∈ g−1(0);

end for;

output: f−1(0).

page 2 of C



interfaces

Applying Program Inversion to Homotopy Solver

h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C, t ∈ [0, 1].

Input: h(x) = 0;

for k from 1 to #g−1(0) do

path starts at yk ∈ g−1(0);

end for;

output: f−1(0).

track paths to target

?

get next start solution

Input: g(x) = 0, k;

compute yk: g(yk) = 0;

or read yk from file;

or type in values for yk;

output: yk ∈ g−1(0).

page 2 of C



interfaces

one gateway routine

extern void adainit( void );

extern int _ada_use_c2phc ( int task, int *a, int *b, double *c );

extern void adafinal( void );

main parallel programs deliberately written in C, using MPI

page 3 of C



interfaces

Input for PHCpack

The main structured input data for PHCpack are polynomials.

Three ways to enter polynomials:

1. reading polynomials from file;

2. polynomials are parsed from strings;

3. given term after term and add up.

Goal: avoid that the user program must duplicate the effort of

building data structures for multivariate polynomials.

page 4 of C



interfaces

PHCpack as State Machine

• consider a vending machine:

1. make selection

2. push button

3. collect product

• data stored in “containers”

1. polynomials read from file or added term after term;

2. solutions written to file or enumerated.

• job numbers define meaning of the parameters

• encapsulation of low level use c2phc via library

page 5 of C



interfaces

a subroutine in phc solve

int input_output_on_files ( void )

{

int fail,rc;

fail = syscon_read_system();

printf("\nThe system in the container : \n");

fail = syscon_write_system();

fail = solve_system(&rc);

printf("\nThe root count : %d\n",rc);

printf("\nThe solutions :\n");

fail = solcon_write_solutions();

return fail;

}

page 6 of C



interfaces

another subroutine

int interactive_input_output ( void )

{

int n,fail,k,nc,i,rc; char ch,p[80];

printf("\nGive the number of polynomials : "); scanf("%d",&n);

fail = syscon_initialize_number(n);

printf("\nReading %d polynomials, ",n);

printf("terminate each with ; (semicolon)...\n");

for(k=1; k<=n; k++)

{

printf("-> polynomial %d : ",k); ch = getchar();

read_poly(&nc,p); fail = syscon_store_polynomial(nc,n,k,p);

}

fail = solve_system(&rc);

printf("\nThe root count : %d\n",rc);

printf("\nThe solutions :\n"); fail = solcon_write_solutions();

return fail;

}

page 7 of C


