
Evaluating polynomials in several variables and
their derivatives on a GPU computing processor

Jan Verschelde
joint work with Genady Yoffe

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
jan@math.uic.edu

The 26th Parallel and Distributed Processing Symposium (IPDPS-12)
The 13th IEEE international Workshop on Parallel and Distributed

Scientific and Engineering Computing (PDSEC-12)
21-25 May 2012, Shanghai, China

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 1 / 16

Outline

1 Problem Statement
evaluating and differentiating polynomials in several variables
quad double arithmetic on a graphics compute processor

2 Massively Parallel Polynomial Evaluation
stages in the evaluation of a system and its Jacobian matrix
computing monomial products from powers of variables
evaluating and differentiating products of variables

3 Computational Experiments
regularity assumptions on the input data
computational results with the Tesla C2050

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 2 / 16

problem statement

A polynomial in n variables x = (x1, x2, . . . , xn) consists of a vector of
nonzero complex coefficients with corresponding exponents in A:

f (x) =
∑

a∈A

caxa, c ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n .

Given is a system f = (f1, f2, . . . , fn) and some point z ∈ C
n.

The problem is to evaluate f and its Jacobian matrix Jf at z,
i.e.: to compute the vector f(z) and the matrix Jf(z).

For large polynomial systems in many variables and high degrees:

the cost of polynomial evaluation and differentiation often
dominates the linear algebra of Newton’s method; and

the double precision as available in standard hardware is often
insufficient to guarantee accurate results.

Goal: offset the extra cost of extended precision by parallel computing.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 3 / 16

an arithmetic network for x1 ⋆ x2 ⋆ x3 ⋆ x4

In Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation by Griewank and Walther, 2nd edition, SIAM 2008,
a product of variables is named Speelpenning’s product.

x1
HHj

⋆
HHj
-

x4
HHj

x1 ⋆ x2 - ⋆ - x4 ⋆ x1 ⋆ x2

x2
��*

x3
��*

⋆
HHj
- x1 ⋆ x2 ⋆ x3

x4
��*

HHj

⋆ - x1 ⋆ x2 ⋆ x3 ⋆ x4

x3
��*

⋆
HHj
-

x1
HHj

x4 ⋆ x3 - ⋆ - x1 ⋆ x3 ⋆ x4

x2
��*

⋆ - x4 ⋆ x3 ⋆ x2

Evaluating x1 ⋆ x2 ⋆ · · · ⋆ xn and its gradient takes 3n − 5 multiplications.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 4 / 16

quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/ ∼dhbailey/mpdist/qd-2.3.9.tar.gz .

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/ .

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 5 / 16

computers and compilers

Hardware:

HP Z800 workstation running Red Hat Enterprise Linux 6.1
The CPU is an Intel Xeon X5690 at 3.47 Ghz.

The processor clock of the NVIDIA Tesla C2050 Computing
Processor runs at 1147 Mhz. The graphics card has 14
multiprocessors, each with 32 cores, for a total of 448 cores.

As the clock speed of the GPU is a third of the clock speed of the CPU,
we hope to achieve a double digit speedup.

Compilers:

Code written in C++ using gcc version 4.4.6.

NVIDIA CUDA compiler driver nvcc , release 4.0, V0.2.1221.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 6 / 16

monomial evaluation and differentiation

Polynomials are linear combinations of monomials xa = xa1
1 xa2

2 · · · xan
n .

Separating monomial products from products of variables:

xa =
(

x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

)

⋆
(

xj1xj2 · · · xjℓ

)

,

for aim ≥ 1, m = 1,2, . . . , k , 1 ≤ i1 < i2 < · · · < ik ≤ n,
and 1 ≤ j1 < j2 < · · · < jℓ ≤ n, with ℓ ≥ k .

Evaluating and differentiating xa in three steps:

1 compute the monomial products x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

2 compute xj1xj2 · · · xjℓ and its gradient
3 multiply the evaluated xj1xj2 · · · xjℓ and its gradient

with the evaluated monomial products

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 7 / 16

computing monomial products x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

To evaluate x3
1 x7

2 x2
3 and its derivatives, we first evaluate the factor

x2
1 x6

2 x3 and then multiply this factor with all derivatives of x1x2x3.

Because x2
1 x6

2 x3 is common to the evaluated monomial and all its
derivatives, we call x2

1 x6
2 x3 a common factor.

The kernel to compute common factors operates in two stages:
1 Each of the first n threads of a thread block computes sequentially

powers from the 2nd to the (d − 1)th of one of the n variables.
2 Each of the threads of a block computes a common factor for one

of the monomials of the system, as a product of k quantities
computed at the first stage of the kernel.

The precomputed powers of variables are stored in shared memory:
the (i , j)th element stores x i

j , minimizing bank conflicts.

The positions and exponents of variables in monomials are stored in
two one dimensional arrays in constant memory.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 8 / 16

common factor calculation

thread computes:

x5
1 ⋆ x4

3 ⋆ · · ·

constant
memory {

POSITIONS

. . . 1 3 . . .

EXPONENTS

. . . 5 4 . . .

J
J
J
J
Ĵ

PPPPPPPPPPPi

shared memory
POWERS

x2
1 x2

2 x2
3 . . . x2

n
x3

1 x3
2 x3

3 . . . x3
n

x4
1 x4

2 x4
3 . . . x4

n
. . .
. . .
xd−1

1 xd−1
2 xd−1

3 . . . xd−1
n

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 9 / 16

memory locations
we illustrate the work done by one thread

To compute the derivatives of s = x1x2x3x4,

Q stores the backward product, and

the i th partial derivative of S is stored in memory location Li .

L1 L2 L3 L4 Q
x1

x1 x1 ⋆ x2

x1 x1x2 (x1x2) ⋆ x3

x1 (x1x2) ⋆ x4 x1x2x3 x4

x1 ⋆ (x3x4) x1x2x4 x1x2x3 x4 ⋆ x3

x2x3x4 x1x3x4 x1x2x4 x1x2x3 (x4x3) ⋆ x2

∂s
∂x1

∂s
∂x2

∂s
∂x3

∂s
∂x4

Only explicitly performed multiplications are marked by a star ⋆.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 10 / 16

the example continued

Given s = x1x2x3x4 and its gradient, with α = x2
1 x6

2 x3
3 x4

4 we evaluate
β = c x3

1 x7
2 x4

3 x5
4 and its derivatives, denoting γ = 1

cβ = x3
1 x7

2 x4
3 x5

4 .

L1 L2 L3 L4 L5

∂s
∂x1

⋆ α ∂s
∂x2

⋆ α ∂s
∂x3

⋆ α ∂s
∂x4

⋆ α

1
3

∂γ
∂x1

1
7

∂γ
∂x2

1
4

∂γ
∂x3

1
5

∂γ
∂x4

1
3

∂γ
∂x1

1
7

∂γ
∂x2

1
4

∂γ
∂x3

1
5

∂γ
∂x4

1
5

∂γ
∂x4

⋆ x4

1
3

∂γ
∂x1

1
7

∂γ
∂x2

1
4

∂γ
∂x3

1
5

∂γ
∂x4

γ

1
3

∂γ
∂x1

⋆ (3c) 1
7

∂γ
∂x2

⋆ (7c) 1
4

∂γ
∂x3

⋆ (4c) 1
5

∂γ
∂x4

⋆ (5c) γ ⋆ c

∂β
∂x1

∂β
∂x2

∂β
∂x3

∂β
∂x4

β

Note that the coefficients (3c), (7c), (4c), (5c) are precomputed.
Only explicitly performed multiplications are marked by a star ⋆.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 11 / 16

regularity assumptions on the input data

Graphics compute processors exploit data parallelism.

Every thread evaluates and differentiates one monomial.

On the one hand, to keep all 14 multiprocessors occupied
about 1,000 monomials are needed.

On the other hand, as monomials are stored as positions and
exponents in constant memory, the 65,536 bytes of constant
memory impose an upper bound on the number of monomials.

Let n be the number of polynomials in the system,
m be the number of monomials per polynomial,
k be the number of variables per monomial,

using one byte for a position and one byte for an exponent,
then we need n × m × k × 2 bytes.

As examples, we take n = m between 30 and 40, and k = n/2.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 12 / 16

limits of shared memory capacity

With double double precision coefficients, dimension 70 is okay.

1 (n/2+1)×2×sizeof(double double) ≤ (70/2+1)×2×16 = 1,152
bytes in shared memory. To handle 32 momomials by a block of
32 threads we would need then at most

32 × 1,152 = 36,864 bytes of shared memory.

2 For storing values of the variable we would need

n × sizeof(complex double double) ≤

70 × 2 × sizeof(double double) = 70 × 2 × 16 = 2,240.

3 Allocation both spaces in shared memory leaves
(49,152 − (36,864 + 2,240)) > 10,000 bytes of shared memory.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 13 / 16

computational experiments

We generate a system with random complex coefficients:

a system of 32 polynomials,

each monomial has 9 variables with nonzero power of at most 2,

a varying number of monomials per polynomial: 22, 32, and 48
lead to 704, 1024, and 1536 monomials in the system.

Wall clock times and speedups for 100,000 evaluations:

#monomials Tesla C2050 1 CPU core speedup
704 14.514 sec 1min 50.9 sec 7.60

1024 15.265 sec 2min 39.3 sec 10.44
1536 17.000 sec 3min 58.7 sec 14.04

At least 1000 monomials are needed for a modest speedup.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 14 / 16

monomials of higher degrees

We generate a system with random complex coefficients:

a system of 32 polynomials,

each monomial has 16 variables with nonzero power ≤ 10,

a varying number of monomials per polynomial: 22, 32, and 48
lead to 704, 1024, and 1536 monomials in the system.

Wall clock times and speedups for 100,000 evaluations:

#monomials Tesla C2050 1 CPU core speedup
704 19.068 sec 3min 16.9 sec 10.33

1024 20.800 sec 4min 43.3 sec 13.62
1536 21.763 sec 7min 05.8 sec 19.56

With higher degrees, we obtain higher speedups.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 15 / 16

conclusions

We obtained modest speedups with our first code for the evaluation
and differentiation of a polynomial system and its Jacobian matrix.

On randomly generated systems, preliminary experiments show that

for good occupancy at least 1000 monomials are needed,

the size of constant memory limits more than 2000 monomials,

speedups increase with higher degrees.

Ongoing and future work includes

quality up factors with double double and quad double precision,

adding a linear solver on the GPU implements Newton’s method,

integration in the polynomial system solver of PHCpack.

Jan Verschelde (UIC) Polynomial Evaluation on a GPU PDSEC 2012 16 / 16

	Problem Statement
	evaluating and differentiating polynomials in several variables
	quad double arithmetic on a graphics compute processor

	Massively Parallel Polynomial Evaluation
	stages in the evaluation of a system and its Jacobian matrix
	computing monomial products from powers of variables
	evaluating and differentiating products of variables

	Computational Experiments
	regularity assumptions on the input data
	computational results with the Tesla C2050

