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polynomial systems

Consider f(x) = 0, a system of equations defined by
N polynomials f = (f0, f1, . . . , fN−1),
in n variables x = (x0, x1, . . . , xn−1).

A polynomial in n variables consists of a vector of nonzero complex
coefficients with corresponding exponents in A:

fk (x) =
∑
a∈Ak

caxa, ca ∈ C \ {0}, xa = xa0
0 xa1

1 · · · xan−1
n−1 .

Input data:
1 A = (A0,A1, . . . ,AN−1) are sets of exponents, the supports.

For a ∈ Z
n, we consider Laurent polynomials, fk ∈ C[x±1]

⇒ only solutions with coordinates in C
∗ = C \ {0} matter.

2 cA = (cA0 ,cA1 , . . . ,cAN−1) are vectors of complex coefficients.
Although A is exact, the coefficients may be approximate.
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solving systems – input/output specification

Input data:
1 A = (A0,A1, . . . ,AN−1) are sets of exponents, the supports.

For a ∈ Z
n, we consider Laurent polynomials, fk ∈ C[x±1]

⇒ only solutions with coordinates in C
∗ = C \ {0} matter.

2 cA = (cA0 ,cA1 , . . . ,cAN−1) are vectors of complex coefficients.
Although A is exact, the coefficients may be approximate.

Output data: What do we want to know?
1 For dimension zero:

1 the number of isolated solutions, match a generic bound?
2 approximations for the coordinates, regular or singular?

2 For positive dimension:
1 the dimensions and the degrees of the solution sets?
2 power series developments as approximations for the solutions?
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binomial systems

Definition
A binomial system has exactly two monomials with nonzero
coefficient in every equation.

The binomial equation caxa − cbxb = 0, a,b ∈ Z
n, ca, cb ∈ C \ {0},

has normal representation xa−b = cb/ca.

A binomial system of N equations in n variables is then defined by an
exponent matrix A ∈ Z

N×n and a coefficient vector c ∈ (C∗)N : xA = c.

Solutions of binomial systems are monomial maps.

1 A unimodular coordinate transformation provides a monomial
parametrization for the solution set.

2 Finding all solutions with zero coordinates can happen via a
generalized permanent calculation.
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an example
Consider as an example for xA = c the system

{
x2

0 x1x4
2 x3

3 − 1 = 0
x0x1x2x3 − 1 = 0

A =

[
2 1 4 3
1 1 1 1

]T

c =

[
1
1

]
.

As basis of the null space of A we can for example take
u = (−3,2,1,0) and v = (−2,1,0,1).

The vectors u and v are tropisms for a two dimensional algebraic set.

Placing u and v in the first two rows of a matrix M, extended so
det(M) = 1, we obtain a coordinate transformation, x = yM :

M =




−3 2 1 0
−2 1 0 1

1 0 0 0
0 1 0 0







x0 = y−3
0 y−2

1 y2

x1 = y2
0 y1y3

x2 = y0
x3 = y1.
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monomial transformations
By construction, as Au = 0 and Av = 0:

MA =




−3 2 1 0
−2 1 0 1

1 0 0 0
0 1 0 0






2 1
1 1
4 1
3 1


 =




0 0
0 0
2 1
1 1


 = B.

The corresponding monomial transformation x = yM performed on
xA = c yields yMA = yB = c, eliminating the first two variables:

{
y2

2 y3 − 1 = 0
y2y3 − 1 = 0.

Solving this reduced system gives values z2 and z3 for y2 and y3.
Leaving y0 and y1 as parameters t0 and t1 we find as solution

(x0 = z2t−3
0 t−2

1 , x1 = z3t2
0 t1, x2 = t0, x3 = t1).
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unimodular coordinate transformations

Definition
A unimodular coordinate transformation x = yM is determined by
an invertible matrix M ∈ Z

n×n: det(M) = ±1.

For a d dimensional solution set of a binomial system:
1 The null space of A gives d tropisms,

stored in the rows of a d -by-n-matrix B.
2 Compute the Smith normal form S of B: UBV = S.
3 There are three cases:

1 U = I ⇒ M = V−1

2 If U �= I and S has ones on its diagonal,
then extend U−1 with an identity matrix to form M.

3 Compute the Hermite normal form H of B

and let D be the diagonal elements of H, then M =

[
D−1 · B
0 I

]
.
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computation of the degree

To compute the degree of (x0 = z2t−3
0 t−2

1 , x1 = z3t2
0 t1, x2 = t0, x3 = t1)

we use two random linear equations:{
c10x0 + c11x1 + c12x2 + c13x3 + c14 = 0
c20x0 + c21x1 + c22x2 + c23x3 + c24 = 0

after substitution:{
c′

10t−3
0 t−2

1 + c′
11t2

0 t1 + c12t0 + c13t1 + c14 = 0
c′

20t−3
0 t−2

1 + c′
21t2

0 t1 + c22t0 + c23t1 + c24 = 0

� �

(1,0)

�(0,1) �(2,1)

�

(−3,−2)

�
�

��������

�
�
�
�
�
�

P

Theorem (Koushnirenko’s Theorem)
If all n polynomials in f share the same Newton polytope P, then the
number of isolated solutions of f(x) = 0 in (C∗)n ≤ the volume of P.

As the area of the Newton polygon equals 8, the surface has degree 8.
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an application: adjacent minors
All adjacent 2-by-2 minors of a general 2-by-4 matrix:

X =

[
x11 x12 x13 x14
x21 x22 x23 x24

]
f(x) =




x11x22 − x21x12 = 0
x12x23 − x22x13 = 0
x13x24 − x23x14 = 0

which has
one 5-dimensional solution of degree four,
with all its components different from zero; and
two affine solutions, each of degree two.

Three references:

Lattice Walks and Primary Decomposition,
by Diaconis, Eisenbud, and Sturmfels, 1998.
Combinatorics of binomial primary decomposition,
by Dickenstein, Matusevich, and Miller, 2010.
Affine solution sets of sparse polynomial systems,
by Herrero, Jeronimo, and Sabia, 2012.
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affine solution sets

An incidence matrix M of a bipartite graph:

f(x) =
{

x11x22 − x21x12 = 0
x12x23 − x22x13 = 0 M[xa, xk ] =

{
1 if ak > 0
0 if ak = 0.

Meaning of M[xa, xk ] = 1: xk = 0 ⇒ xa = 0.

The matrix linking monomials to variables is

M[xa, xk ] =




x11 x12 x13 x21 x22 x23
x11x22 1 0 0 0 1 0
x21x12 0 1 0 1 0 0
x12x23 0 1 0 0 0 1
x22x13 0 0 1 0 1 0


 .

Observe: overlapping columns x12 with x22 gives all ones.
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enumerating all candidate affine solution sets
Apply row expansion on the matrix

M[xa, xk ] =




x11 x12 x13 x21 x22 x23
x11x22 1 0 0 0 1 0
x21x12 0 1 0 1 0 0
x12x23 0 1 0 0 0 1
x22x13 0 0 1 0 1 0


 .

Selecting 1 means setting the corresponding variable to zero.
Monomials must be considered in pairs: if one monomial in an
equation vanishes, then so must the other one.
For all affine sets, we must skip pairs of rows, preventing from
certain variables to be set to zero.
To decide whether one candidate set C1 belongs to another
set C2, we construct the defining equations I(C1) and I(C2)
and apply C1 ⊆ C2 ⇔ I(C1) ⊇ I(C2).
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running times in seconds on adjacent minors

n 2n−1 #maps search witness
3 4 2 0.00 0.03
4 8 3 0.00 0.16
5 16 5 0.00 0.68
6 32 8 0.00 2.07
7 64 13 0.01 7.68
8 128 21 0.01 28.10
9 256 34 0.02 71.80

10 512 55 0.05 206.01
11 1024 89 0.10 525.46
12 2048 144 0.24 —
13 4096 233 0.57 —
14 8192 377 1.39 —
15 16384 610 3.33 —
16 32768 987 8.57 —
17 65536 1597 21.36 —
18 131072 2584 55.95 —
19 262144 4181 140.84 —
20 524288 6765 372.62 —
21 1048576 10946 994.11 —

• For a general 2-by-n matrix,
consider adjacent 2-by-2 minors.

• The degree of the solution
set is 2n−1, for 2n variables.

• The number of irreducible factors
is the n-th Fibonacci number.
This number equals #maps.

• Times are in seconds, on 1 core
of a 3.49GHz Linux workstation.
Times are < 1,000 seconds.

• The “witness” column times the
computation of 2n−1 generic points.

• The “search” column times the
computation of all monomial maps.

• Conclusion: it works!
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the cyclic 4-roots problem

f(x) =




x0 + x1 + x2 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

The cyclic n-roots system is a benchmark in computer algebra.
Its solutions are important in the study of biunimodular vectors.

Haagerup: for prime p, there are
(

2p − 2
p − 1

)
isolated roots.

Backelin: for n = �m2, there are infinitely many cyclic n-roots.
Björck and Saffari conjecture: if n is not divisible by a square,
then the set of cyclic n-roots is finite.
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power series as solutions

If we expect that

f(x) =




x0 + x1 + x2 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

has a solution curve, then we look for solutions of the form

x0 = tv0 , x1 = c1tv1(1+O(t)), x2 = c2tv2(1+O(t)), x3 = c3tv3(1+O(t)),

where
the leading exponents v0, v1, v2, and v3 are integer numbers; and
the leading coefficients c1, c2, and c3 are nonzero complex
coefficients.
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conditions on the exponents

We can compute the exponents of the power series solutions,
before computing the coefficients.

For example, for cyclic 4-roots, substituting the series

x0 = tv0 , x1 = c1tv1(1+O(t)), x2 = c2tv2(1+O(t)), x3 = c3tv3(1+O(t)),

into the last equation:
x0x1x2x3 − 1 = 0

leads to
c1c2c3tv0+v1+v2+v3(1 + O(t)) − 1 = 0.

For all coefficients to be nonzero: c1c2c3 − 1 = 0 is equivalent to

v0 + v1 + v2 + v3 = 0.
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initial forms
Substituting xk = ck tvk (1 + O(t)) into f (x) =

∑
a∈A

caxa leads to

f (x0 = tv0 , x1 = c1tv1(1 + O(t)), . . . , xn−1 = cn−1tvn−1(1 + O(t)))

=
∑
a∈A

(tv0)a0(c1tv1(1 + O(t)))a1 · · · (cn−1tvn−1(1 + O(t)))an−1

=
∑
a∈A

(ca1
1 · · · can−1

n−1 )t

v0a0 + v1a1 + · · ·+ vn−1an−1︸ ︷︷ ︸
= 〈v,a〉 (1 + O(t))

Definition
For v �= 0, and a polynomial f supported on A, the initial form inv(f ) is

inv(f )(x) =
∑

〈v,a〉=mv(A)

caxa, mv(A) = min
a∈A

〈v,a〉.
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curves of cyclic 4-roots

f(x) =




x0 + x1 + x2 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

One tropism v = (+1,−1,+1,−1) with inv(f)(z) = 0:

inv(f)(x) =




x1 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x1x2x3 + x3x0x1 = 0
x0x1x2x3 − 1 = 0.

We look for solutions of the form

(x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1).
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solving the initial form system

Substitute (x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1):

inv(f)(x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1)

=




(1 + z2)t+1 = 0
z1 + z1z2 + z2z3 + z3 = 0

(z1z2 + z3z1)t+1 = 0
z1z2z3 − 1 = 0.

We find two solutions: (z1 = −1, z2 = −1, z3 = +1)
and (z1 = +1, z2 = −1, z3 = −1).

Two space curves
(
t ,−t−1,−t , t−1) and

(
t , t−1,−t ,−t−1)

satisfy the entire cyclic 4-roots system.
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overview of our polyhedral methods
finding pretropisms and solving initial forms

Initial forms with at least two monomials in every equation
define the intersection points of the solution set with the
coordinate hyperplanes.

unimodular coordinate transformations

Via the Smith normal form we obtain nice representations
for solutions at infinity.
Solutions of binomial systems are monomial maps.

computing terms of power series

Although solutions to any initial forms may be monomial maps,
in general we need more terms in the power series expansion to
distinguish between

� a positive dimensional solution set, and
� an isolated solution at infinity.
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a tropical version of Backelin’s Lemma

Lemma (Tropical Version of Backelin’s Lemma, CASC 2013)

For n = m2�, where � ∈ N \ {0} and � is no multiple of k2, for k ≥ 2,
there is an (m − 1)-dimensional set of cyclic n-roots, represented
exactly as

xkm+0 = uk t0
xkm+1 = uk t0t1
xkm+2 = uk t0t1t2

...
xkm+m−2 = uk t0t1t2 · · · tm−2

xkm+m−1 = γuk t−m+1
0 t−m+2

1 · · · t−2
m−3t−1

m−2

for k = 0,1,2, . . . , �m − 1, free parameters t0, t1, . . . , tm−2, constants
u = e

i2π
m� , γ = e

iπβ
m� , with β = (α mod 2), and α = m(m�− 1).
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one polyhedral cone for cyclic 16-roots
For cyclic 16-roots, there is a three dimensional solution set.
The rays in the tropical version of Backelin’s Lemma are

(1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3),
(0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2),
(0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1).

Based on the tropical prevariety (PASCO 2017), the cone spanned by
the rays above are contained in the relative interior of a cone spanned
by the following four rays:

( 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3),
(-1, -1, 3, -1, -1, -1, 3, -1, -1, -1, 3, -1, -1, -1, 3, -1),
( 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1),
(-1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1).
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one polyhedral cone for cyclic 16-roots – continued
Every ray in the interior of the two polyhedral cones
defines the same initial form system.

(1, 1)

x

y

••

•

◦

◦ ◦

◦
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conclusions

Sparse polynomial systems may have sparse solution sets.

Solution sets of binomial systems are monomial maps.

Interested in a solution set of dimension d?
→ Examine the initial form systems defined by the cones in the
tropical prevariety of dimension d .

Solution curves are represented by power series:
� The leading powers of the series define initial form systems.
� The leading coefficients of the power series are solutions of the

initial form systems.

Encouraging results for the cyclic n-roots problem.
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