Sampling Algebraic Sets in Local Intrinsic Coordinates

Yun Guan Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~juan guan@math.uic.edu jan@math.uic.edu

FoCM 2011 – Real Number Complexity Workshop Budapest, Hungary, 4-6 July 2011

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots
- Improving the Numerical Conditioning
 - extrinsic, intrinsic, and local condition numbers
 - a recentering algorithm and the numerical stability
 - computational results on benchmark systems

Generic Points on Algebraic Sets

numerical representation of an algebraic set

- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots
- Improving the Numerical Conditioning
 - extrinsic, intrinsic, and local condition numbers
 - a recentering algorithm and the numerical stability
 - computational results on benchmark systems

.∃ . ►

Representing a Space Curve

Consider the twisted cubic:

$$\begin{cases} y-x^2=0\\ z-x^3=0 \end{cases}$$

Important attributes are dimension and degree:

- dimension: cut with one random plane,
- degree: #points on the curve and in the plane.

Witness Set for a Space Curve

Consider the twisted cubic:

Intersect with a random plane $c_0 + c_1 x + c_2 y + c_3 z = 0$ \rightarrow find three generic points on the curve.

Generic Points on Algebraic Sets

A polynomial system $f(\mathbf{x}) = \mathbf{0}$ defines an algebraic set $f^{-1}(\mathbf{0}) \subset \mathbb{C}^n$. We assume

(1) $f^{-1}(\mathbf{0})$ is pure dimensional, k is codimension; and moreover

2 $f(\mathbf{x}) = \mathbf{0}$ is a complete intersection, k =#polynomials in f.

For example, consider all adjacent minors of a general 2-by-3 matrix:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \quad f(\mathbf{x}) = \begin{cases} x_{11}x_{22} - x_{21}x_{12} = 0 \\ x_{12}x_{23} - x_{22}x_{13} = 0 \end{cases}$$
$$k = 2: \dim(f^{-1}(\mathbf{0})) = n - k = 4.$$

To compute deg($f^{-1}(\mathbf{0})$), add n - k general linear equations $L(\mathbf{x}) = \mathbf{0}$ to $f(\mathbf{x}) = \mathbf{0}$ and solve $\{f(\mathbf{x}) = \mathbf{0}, L(\mathbf{x}) = \mathbf{0}\}$.

 \rightarrow 4 generic points for all adjacent minors of a general 2-by-3 matrix.

n = 6.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots
- Improving the Numerical Conditioning
 - extrinsic, intrinsic, and local condition numbers
 - a recentering algorithm and the numerical stability
 - computational results on benchmark systems

Intrinsic Coordinates save Work

Generic points for all adjacent minors of a general 2-by-3 matrix satisfy (for random coefficients $c_{ii} \in \mathbb{C}$):

$$\begin{aligned} x_{11}x_{22} - x_{21}x_{12} &= 0 \\ x_{12}x_{23} - x_{22}x_{13} &= 0 \\ c_{10} + c_{11}x_{11} + c_{12}x_{12} + c_{13}x_{13} + c_{14}x_{21} + c_{15}x_{22} + c_{16}x_{23} &= 0 \\ c_{20} + c_{21}x_{11} + c_{22}x_{12} + c_{23}x_{13} + c_{24}x_{21} + c_{25}x_{22} + c_{26}x_{23} &= 0 \\ c_{30} + c_{31}x_{11} + c_{32}x_{12} + c_{33}x_{13} + c_{34}x_{21} + c_{35}x_{22} + c_{36}x_{23} &= 0 \\ c_{40} + c_{41}x_{11} + c_{42}x_{12} + c_{43}x_{13} + c_{44}x_{21} + c_{45}x_{22} + c_{46}x_{23} &= 0 \end{aligned}$$

 $L^{-1}(\mathbf{0})$ is a 2-plane in \mathbb{C}^6 , spanned by

 $\begin{vmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{vmatrix} + \xi_1 \begin{vmatrix} v_{11} \\ v_{12} \\ v_{13} \\ v_{14} \\ v_{15} \end{vmatrix} + \xi_2 \begin{vmatrix} v_{21} \\ v_{22} \\ v_{23} \\ v_{24} \\ v_{25} \end{vmatrix}$

b is offset point $\mathbf{v}_1, \mathbf{v}_2$ orthonormal basis

 (ξ_1,ξ_2) intrinsic coordinates

A Commutative Diagram

• $f(\mathbf{x}) = 0$ a system of k polynomials in n variables \mathbf{x} ,

• $L(\mathbf{x}) = 0$ a system of n - k general linear equations in \mathbf{x} ,

• $\mathbf{b} \in \mathbb{C}^n$ is offset point, $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k], \ V^H V = I_k$.

Intrinsic coordinates $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_k)$ for **x**:

$$\mathbf{x} = \mathbf{b} + \xi_1 \mathbf{v}_1 + \xi_2 \mathbf{v}_2 + \dots + \xi_k \mathbf{v}_k = \mathbf{b} + V \boldsymbol{\xi}.$$

Use $f(\mathbf{x} = \mathbf{b} + V\boldsymbol{\xi}) = \mathbf{0}$ to compute generic points:

We observe worsening of the numerical conditioning: $K_I \gg K_E$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots
- Improving the Numerical Conditioning
 - extrinsic, intrinsic, and local condition numbers
 - a recentering algorithm and the numerical stability
 - computational results on benchmark systems

Sampling in Intrinsic Coordinates

Represent *L* via (**b**, *V*) and use intrinsic coordinates $\xi \in \mathbb{C}^k$. Moving from (**b**, *V*) to (**c**, *W*), as *t* goes from 0 to 1, homotopy:

$$f\left(\begin{array}{ccc} \mathbf{x}=&(1-t)\mathbf{b}+t\mathbf{c}&+&((1-t)V+tW)&\boldsymbol{\xi}\\ & \text{moving offset point}& \text{moving basis vectors} \end{array}\right)=\mathbf{0}.$$

Track paths $\xi(t)$ via predictor-corrector methods.

Binomial expansion destroys sparse monomial structure of *f*. For example, evaluate $x_1^{a_1}x_2^{a_2}$ at $x_1 = b_1 + \xi_1 v_1$ and $x_2 = b_2 + \xi_2 v_2$:

$$\left(\sum_{i=0}^{a_1} \begin{pmatrix} a_1 \\ i \end{pmatrix} b_1^i (\xi_1 v_1)^{a_1-i}\right) \left(\sum_{j=0}^{a_2} \begin{pmatrix} a_2 \\ j \end{pmatrix} b_2^j (\xi_2 v_2)^{a_2-j}\right)$$

In general: $f(\mathbf{b} + V(\xi + \Delta \xi)) = f(\mathbf{b} + V\xi) + \Delta f$, with very large $||\Delta f||$.

Local Intrinsic Coordinates

What if we could keep $||\xi||$ small?

Now we have: $f(\mathbf{b} + V\xi) = f(\mathbf{b}) + \Delta f$,

where $||\Delta f||$ is $O(||V\xi||) = O(||\xi||)$ as V is orthonormal basis.

Use extrinsic coordinates of generic point as offset point for *k*-plane: for $d = \deg(f^{-1}(\mathbf{0}))$ and *d* generic points $\{\mathbf{z}_1, \mathbf{z}_1, \dots, \mathbf{z}_d\}$:

$$\mathbf{x} = \mathbf{z}_{\ell} + V \boldsymbol{\xi}, \quad \ell = 1, 2, \dots, d.$$

The local intrinsic coordinates are defined by $(\{z_1, z_1, \dots, z_d\}, V)$.

A D K A D K A D K A D K

Origin and Assumptions

The problem has its origin in the implementation of an intrinsic homotopy for intersecting algebraic varieties *J. Complexity* 21(4):593-608, 2005 (with Sommese & Wampler).

Intrinsic coordinates were introduced to mitigate the doubling of the number of variables in the diagonal homotopy.

Assumptions:

- *no* rewriting of the equations for $f(\mathbf{x}) = \mathbf{0}$;
- the algebraic set we sample is reduced;
- coefficients and solutions are well scaled; and
- our working precision remains fixed.

A E N A E N

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots
- Improving the Numerical Conditioning
 - extrinsic, intrinsic, and local condition numbers
 - a recentering algorithm and the numerical stability
 - computational results on benchmark systems

a Maple experiment

Via the companion matrix of a polynomial, we relate the numerical conditioning of a root to that of an eigenvalue.

We use LinearAlgebra[EigenConditionNumbers] of Maple 12, with default settings of the balance parameter, and UseHardwareFloats set to true.

We consider one sparse polynomial f (5 terms) in n = 10 variables, of increasing degrees d, with coefficients on the complex unit circle.

Influence of Offset Point

Consider intrinsic coordinates once with and once without offset b:

$$\mathbf{x} = \mathbf{b} + \mathbf{v}\xi$$
 and $\mathbf{x} = \mathbf{v}\xi$, $\mathbf{b}, \mathbf{v} \in \mathbb{C}^n$,

With $f(\mathbf{v}\xi) = 0$ all coefficients are on the complex unit circle. With $f(\mathbf{b} + \mathbf{v}\xi) = 0$, the offset **b** causes the variation in the condition numbers. The table displays *inverse* condition numbers:

d	$f(\mathbf{b} + \mathbf{v}\xi) = 0$		$f(\mathbf{v}\xi) = 0$		ratios of	ratios of
	largest	smallest	largest	smallest	smallest	largest
10	5.9e-01	9.0e-02	8.8e-01	4.0e-01	6.6e+00	2.2e+00
20	2.8e-01	1.8e-03	8.9e-01	3.3e-01	1.6e+02	2.7e+00
30	2.8e-01	6.2e-05	9.5e-01	7.3e-02	4.5e+03	1.3e+01
40	4.5e-01	7.1e-06	9.7e-01	1.9e-01	6.3e+04	5.8e+00

The conditioning for $f(\mathbf{b} + \mathbf{v}\xi) = 0$ worsens for increasing degree *d*, whereas for $f(\mathbf{v}\xi) = 0$, all roots of $f(\mathbf{v}\xi) = 0$ are well conditioned.

Global versus Local

To compare the conditioning of global intrinsic with local intrinsic coordinates, we first solve $f(\mathbf{b} + \mathbf{v}\xi) = 0$ and take one root, say $\xi = z$.

Then let $\mathbf{b}_z = \mathbf{b} + \mathbf{v}z$ so $f(\mathbf{b}_z + \mathbf{v}\xi) = 0$ has one solution $\xi = 0$ corresonding to *z*.

d	$f(\mathbf{b}+\mathbf{v}\xi)=0$			$f(\mathbf{b}_z + \mathbf{v}\xi) = 0$		
	largest	2nd largest	smallest	largest	2nd largest	smallest
10	5.9e-01	4.7e-01	6.2e-02	1.0e+00	2.8e-03	2.0e-06
20	4.0e-01	3.3e-01	6.7e-03	1.0e+00	9.9e-06	7.0e-11
30	2.5e-01	1.1e-01	8.1e-04	1.0e+00	4.0e-08	3.4e-11
40	5.6e-01	2.4e-01	1.4e-04	1.0e+00	1.5e-08	3.9e-11

For growing degree *d*, the condition of *z* of $f(\mathbf{b}_z + \mathbf{v}\xi) = 0$ is 1.0e+00, while the condition of other roots worsens.

(日)

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots
- Improving the Numerical Conditioning
 - extrinsic, intrinsic, and local condition numbers
 - a recentering algorithm and the numerical stability
 - computational results on benchmark systems

Numerical Polynomial Evaluation

Definition (Demmel 1997, Applied Linear Algebra)

The *relative condition number* to evaluate a polynomial p of degree d in one variable x with complex coefficients is

$$\mathrm{cond}(\pmb{\rho},\pmb{x}) = rac{\displaystyle\sum_{i=0}^d |\pmb{c}_i\pmb{x}^i|}{|\pmb{
ho}(\pmb{x})|} \quad ext{for} \quad \pmb{
ho}(\pmb{x}) = \displaystyle\sum_{i=0}^d \pmb{c}_i\pmb{x}^i \quad ext{with} \quad \pmb{c}_i \in \mathbb{C}.$$

Observe:

- At p(x) = 0: cond $(p, x) = \infty$, an ill-posed problem.
- For bounded cond(p, x), we evaluate at $x: |x| \approx 1$.

イロト イロト イモト イモト

Global versus Local

We compare evaluating a polynomial p

(1) at $x = b + v\xi$, for random $b, v \in \mathbb{C}$, |b| = 1, |v| = 1; and

2 at x = z + vh, with $v \in \mathbb{C}$ as above and $h: 0 < |h| \ll 1$.

With $0 < |h| \ll 1$, we neglect $O(h^2)$ terms.

The equation $b + v\xi = z + vh$ defines the relation between ξ and z.

Lemma (monomial evaluation)

For d > 1, |b| = 1, |v| = 1, |z| = 1, and $0 < |h| \ll 1$, the ratio

$$\frac{\operatorname{cond}(x^d, x = b + v\xi)}{\operatorname{cond}(x^d, x = z + vh)} \leq \frac{3^d}{1 - O(h)}$$

compares the condition of evaluating x^d as a polynomial in ξ to x^d as a polynomial in h.

Proof Idea: apply binomial expansion.

(日)

Polynomials in one Variable

Proposition

Let
$$p = \sum_{i=0}^{d} c_i x^i$$
. For $|b| = 1$, $|v| = 1$, $|z| = 1$, $|p(z)| \gg |h|$
and $0 < |h| \ll 1$: $\frac{\operatorname{cond}(p, x = b + v\xi)}{\operatorname{cond}(p, x = z + vh)} \le \frac{\sum_{i=0}^{d} |c_i| 3^i}{|p(z)| - O(h)}$.

Proof Idea: apply triangle inequalities.

Corollary

For
$$|c_i| = 1$$
 in p , the ratio $\frac{\operatorname{cond}(p, x = b + v\xi)}{\operatorname{cond}(p, x = z + vh)} \le \frac{1}{2} \frac{3^{d+1} - 1}{|p(z)| - O(h)}$
compares the condition of evaluating p as a polynomial in ξ to p as a polynomial in h .

Yun Guan and Jan Verschelde (UIC)

,

・ロト ・四ト ・ヨト ・ヨト

Polynomials in several Variables

Definition

The *relative condition number* to evaluate a sparse polynomial f in n variables, with support set $A \in \mathbb{N}^n$, $\#A < \infty$, is

$$\operatorname{cond}(f, \mathbf{x}) = \frac{\displaystyle\sum_{\mathbf{a} \in \mathcal{A}} |c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}|}{|f(\mathbf{x})|},$$

for

$$f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad c_{\mathbf{a}} \in \mathbb{C} \setminus \{0\}, \ \mathbf{x}^{\mathbf{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}.$$

The degree of *f* is

$$\deg(f) := \max_{\mathbf{a} \in A} \left(a_1 + a_2 + \cdots + a_n \right).$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Global versus Local

We compare evaluating a sparse polynomial *f* at $\mathbf{x} = \mathbf{b} + \mathbf{v}\xi$ to evaluating *f* at $\mathbf{x} = \mathbf{z} + \mathbf{v}h$.

Theorem

Let
$$f = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$$
. For $|b_i| = 1$, $|v_i| = 1$, $|z_i| = 1$, $i = 1, 2, ..., n$,
 $|f(\mathbf{z})| \gg |h|$, and $0 < |h| \ll 1$:
 $\frac{\operatorname{cond}(f, \mathbf{x} = \mathbf{b} + \mathbf{v}\xi)}{\operatorname{cond}(f, \mathbf{x} = \mathbf{z} + \mathbf{v}h)} \le \frac{\sum_{\mathbf{a} \in A} |c_{\mathbf{a}}| 3^{a_1 + a_2 + \dots + a_n}}{|f(\mathbf{z})| - O(h)}$.

Proof Idea: apply binomial expansion and triangle inequalities.

Yun Guan and Jan Verschelde (UIC)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots

Improving the Numerical Conditioning

- extrinsic, intrinsic, and local condition numbers
- a recentering algorithm and the numerical stability
- computational results on benchmark systems

Roots as Eigenvalues

We define the condition number of roots of a polynomial in one variable via the condition numbers of the eigenvalues of the companion matrix.

Definition (Tyrtyshnikov 1997, numerical analysis textbook)

Let C_p be the companion matrix of a polynomial p in one variable x and with complex coefficients.

Solutions to p(x) = 0 are eigenvalues denoted by z with corresponding right eigenvectors $\mathbf{r} \in \mathbb{C}^n$: $C_p \mathbf{r} = z \mathbf{r}$ and left eigenvectors $\mathbf{q} \in \mathbb{C}^n$: $\mathbf{q}^H C_p = \mathbf{q}^H z$.

The condition number $\kappa(p, z)$ of a zero z of p with corresponding left and right eigenvectors \mathbf{q}_z and \mathbf{r}_z is

$$\kappa(\boldsymbol{p}, \boldsymbol{z}) = \frac{||\mathbf{q}_{\boldsymbol{z}}||_2||\mathbf{r}_{\boldsymbol{z}}||_2}{|\mathbf{q}_{\boldsymbol{z}}^H\mathbf{r}_{\boldsymbol{z}}|}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Roots of Unity

We consider polynomials with perfectly conditioned roots.

Lemma

Consider $p = x^d - 1$. For all z, p(z) = 0, we have $\kappa(p, z) = 1$.

Proof Idea: eigenvectors are powers of a root.

Notes:

- With eigenvalues we ignore the sparsity of *p*.
- Distances between the roots decrease as *d* increases.
- Sparse condition numbers are *ε*/*d* for perturbations *ε*.
 See Questions of numerical condition related to polynomials [Gautschi 1984].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Perturbed Roots of Unity

Lemma

Let $v \in \mathbb{C}$, |v| = 1, and $h, 0 < |h| \ll 1$ consider $p = (x + vh)^d - 1$. For all z, p(z) = 0 we have $\kappa(p, z) = 1 + O(h)$.

Proof Idea: view companion matrix of *p* as $C_p(h) = C_p + C_1 h + O(h^2)$.

Consider
$$p(x) = (b + vx)^d - 1 = 0$$

for constants *b* and *v* on the complex unit circle.

Our notion of numerical conditioning is algebraic, not geometric.

In the geometric point of view, the roots of *p* compared to those of $x^d - 1$ are merely translated.

As this translation preserves the distance between the roots one would not expect a worsening of the condition number.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shifted Roots of Unity

Lemma

Let
$$b, v \in \mathbb{C}$$
, $|b| = 1$, $|v| = 1$, and consider $p = (b + xv)^d - 1$.
For all z , $p(z) = 0$ we have $\kappa(p, z) \le d\sqrt{\frac{4^d\Gamma(d+1/2)}{\sqrt{\pi}\Gamma(d+1)}}$.

Proof Idea: apply the theorem of Bauer-Fike and Maple 12 to bound a spectral radius via $\sum_{i=0}^{d} \begin{pmatrix} d \\ i \end{pmatrix}^2 = \frac{4^{d}\Gamma(d+1/2)}{\sqrt{\pi}\Gamma(d+1)}.$

Because
$$\log_2\left(\sqrt{\frac{4^d\Gamma(d+1/2)}{\sqrt{\pi}\Gamma(d+1)}}\right)$$
 increases fairly linearly and is bounded by $d-1$, we replace $\sqrt{\frac{4^d\Gamma(d+1/2)}{\sqrt{\pi}\Gamma(d+1)}}$ by 2^{d-1} .

< 回 > < 三 > < 三 >

Comparing Condition Numbers

The lemmas imply

Theorem

Let $b,v\in\mathbb{C},$ |b|=1, |v|=1, and h such that $0<|h|\ll 1.$ Then, the ratio

$$\frac{\kappa\left((b+vx)^d-1,z\right)}{\kappa\left((x+vh)^d-1,z\right)} \leq 2^{d-1}-O(h)$$

compares the conditioning of the solutions of $(b + vx)^d - 1 = 0$ with the solutions of $(x + vh)^d - 1 = 0$.

The upper bound of the theorem is attained for the case of $(-1+x)^d - 1 = 0$ where 2 is a solution and powers of 2 appear in the companion matrix.

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots

Improving the Numerical Conditioning

- extrinsic, intrinsic, and local condition numbers
- a recentering algorithm and the numerical stability
- computational results on benchmark systems

an isolated Root of a Polynomial System

Definition (Rheinboldt, 1976)

Let $f(\mathbf{x}) = \mathbf{0}$ be a polynomial system of *n* equations in *n* unknowns. Denote the Jacobian matrix of *f* by J_f and let $\mathbf{z} \in \mathbb{C}^n$ be an isolated solution. Then, *the relative condition number of the zero* \mathbf{z} *as a solution of* $f(\mathbf{x}) = \mathbf{0}$ is

$$\kappa(f,\mathbf{Z}) = ||J_f(\mathbf{Z})||_2 ||J_f^{-1}(\mathbf{Z})||_2,$$

i.e.: $\kappa(f, \mathbf{Z})$ is the condition number of the Jacobian matrix of the polynomials in the system evaluated at \mathbf{Z} .

Notes:

- In Newton's method we solve $J_f(\mathbf{x})\Delta\mathbf{x} = -f(\mathbf{x})$.
- We have $||C||_2 = \sqrt{\rho(C^H C)}$ where $\rho(\cdot)$ is the spectral radius. For univariate *f*, we use the companion matrix for *C*.
- κ(f, z) is local: for one solution z and particular: it depends on the coefficients of f, determined by a coordinate system.

Yun Guan and Jan Verschelde (UIC)

Numerical Condition of generic Points

Definition (extrinsic, intrinsic, local condition number)

Let $\mathbf{z} \in \mathbb{C}^n$ be a generic point on an (n - k)-dimensional component of $f^{-1}(\mathbf{0})$, satisfying k linear equations $L(\mathbf{z}) = \mathbf{0}$. Then, the relative extrinsic condition number of \mathbf{z} , as a generic point on $f^{-1}(\mathbf{0}) \cap L$ is

$$\kappa_{\mathcal{E}}(f, L, \mathbf{Z}) = \kappa(f = (f, L), \mathbf{Z}).$$

Writing the solutions to the linear equations $L(\mathbf{x}) = \mathbf{0}$ as $\mathbf{x} = \mathbf{b} + V\boldsymbol{\xi}$, for some offset point **b** and orthonormal matrix $V \in \mathbb{C}^{n \times k}$, we have $\mathbf{z} = \mathbf{b} + V\boldsymbol{\xi}_z$, where $\boldsymbol{\xi}_z$ are the intrinsic coordinates of **z**. Then, *the relative intrinsic condition number of* **z**, *as a generic point of* $f^{-1}(\mathbf{0})$ is

$$\kappa_{\mathcal{I}}(f, \mathbf{b}, V, \mathbf{z}) = \kappa(f = f(\mathbf{b} + V\xi_{\mathbf{z}}), \xi_{\mathbf{z}}).$$

The relative local intrinsic condition number of **Z** as a generic point on $f^{-1}(\mathbf{0})$ is

$$\kappa_{\mathcal{L}}(f, V, \mathbf{z}) = \kappa(f = f(\mathbf{z} + V\boldsymbol{\xi}), \boldsymbol{\xi} = \mathbf{0}).$$

the Test Equation in extrinsic Coordinates

Similar to $x^d - 1 = 0$, we consider the multivariable version as test equation $\mathbf{x}^{\mathbf{a}} - 1 = 0$, $\mathbf{a} = (a_1, a_2, \dots, a_n)$.

Lemma

Let
$$f = \mathbf{x}^{\mathbf{a}} - 1 = \mathbf{0}$$
, $\mathbf{x}^{\mathbf{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$, denote $d = a_1 + a_2 + \cdots + a_n$.

There is a choice for the coefficients of *L* defining a generic point \mathbf{z} , $f(\mathbf{z}) = 0$, $L(\mathbf{z}) = \mathbf{0}$ so $\kappa_{\mathcal{E}}(f, L, \mathbf{z}) \le d^2$.

Our proof considers the Jacobian matrix of $f(\mathbf{x}) = \mathbf{0}$ with the coefficients of $L(\mathbf{x}) = \mathbf{0}$ as indeterminates.

Note that **z** is *not* considered as given (and thus fixed), because otherwise we could still obtain a badly scaled Jacobian matrix.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

the Test Equation in intrinsic Coordinates

We consider the condition of intrinsic coordinates of our test equation.

Lemma

Let $\mathbf{z} \in \mathbb{C}^n$ be a generic point of $f(\mathbf{x}) = \mathbf{x}^{\mathbf{a}} - 1 = 0$, $\mathbf{x}^{\mathbf{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$, $d = a_1 + a_2 + \cdots + a_n$. Let $\mathbf{z} = \mathbf{b} + \mathbf{v}\xi_{\mathbf{z}}$ for some offset point \mathbf{b} and a vector \mathbf{v} . Then $\kappa_{\mathcal{I}}(f, \mathbf{b}, \mathbf{v}, \xi_{\mathbf{z}}) \leq 2^{d-1}$.

Apply repeated substitution to reduced to the univariate case and use 2^{d-1} for the expression $\sqrt{\frac{4^d\Gamma(d+1/2)}{\sqrt{\pi}\Gamma(d+1)}}$.

The bound is pessimistic but is attained in bad cases.

the Test Equation in local intrinsic Coordinates

Lemma

Consider $\mathbf{x} = \mathbf{z} + \mathbf{v}\xi$ for some vector \mathbf{v} , $||\mathbf{v}||_2 = 1$, and $\mathbf{z} \in \mathbb{C}^n$ a generic point for $f(\mathbf{x}) = \mathbf{x}^a - 1$. Then, $\kappa_{\mathcal{L}}(f, \mathbf{v}, \mathbf{z}) = 1$.

To summarize:

Theorem

For a generic point **z** for the equation $f(\mathbf{x}) = \mathbf{x}^{\mathbf{a}} - 1 = 0$, with $d = \deg(f)$, we have:

$$\kappa_{\mathcal{L}}(f, \mathbf{v}, \mathbf{z}) \leq \kappa_{\mathcal{E}}(f, L, \mathbf{z}) \leq \kappa_{\mathcal{I}}(f, \mathbf{b}, \mathbf{v}, \mathbf{z}) \leq 2^{d-1},$$

where **z** lies on some generic line with offset **b**, direction **v**, and linear equations $L(\mathbf{x}) = 0$.

Yun Guan and Jan Verschelde (UIC)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots

Improving the Numerical Conditioning

- extrinsic, intrinsic, and local condition numbers
- a recentering algorithm and the numerical stability
- computational results on benchmark systems

Sampling in Local Intrinsic Coordinates

Generic points $\{z_1, z_1, ..., z_d\}$ are offset points for *k*-plane *L* with directions in the orthonormal matrix *V*.

Moving from (\mathbf{z}_{ℓ}, V) to (\mathbf{b}, W) , as *t* goes from 0 to 1, homotopy:

$$f(\mathbf{x} = (1 - t)\mathbf{z}_{\ell} + t\mathbf{b} + W\boldsymbol{\xi}) = \mathbf{0}$$

 \rightarrow only the offset point moves!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Instead of moving to **b**, let **c** be the orthogonal projection of \mathbf{z}_{ℓ} onto the *k*-plane *L*.

For some step size *h*, consider:

$$f(\mathbf{x} = \mathbf{z}_{\ell} + h(\mathbf{c} - \mathbf{z}_{\ell}) + W\xi) = \mathbf{0}$$

and apply Newton's method to find the correction $\Delta \xi$.

Schematic of the new Sampling Algorithm

one predictor-corrector step

Yun Guan and Jan Verschelde (UIC)

FoCM 2011 38 / 44

pseudocode for one predictor-corrector step

Input:
$$\mathbf{b} \in \mathbb{C}^n$$
, $W = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \ \mathbf{w}_k] \in \mathbb{C}^{n \times k}$, $W^* W = I_k$
 $\mathbf{z} \in \mathbb{C}^n$, $f(\mathbf{z}) = \mathbf{0}$, $K(\mathbf{z}) = \mathbf{0}$, $h > 0$, $\epsilon > 0$, some L.

Output: $\hat{\mathbf{z}}$, $f(\hat{\mathbf{z}}) = \mathbf{0}$: $\hat{\mathbf{z}}$ closer to *L*.

$$\begin{split} \mathbf{v} &:= \mathbf{z} - \mathbf{b}; \qquad \mathbf{v} := \mathbf{v} - \sum_{i=1}^{k} (\overline{\mathbf{w}_{i}}^{T} \mathbf{v}) \mathbf{w}_{i}; \qquad \mathbf{v} := \mathbf{v} / ||\mathbf{v}||; \\ \widetilde{\mathbf{z}} &:= \mathbf{z} + h \, \mathbf{v}; \qquad \widehat{\mathbf{z}} := \widetilde{\mathbf{z}}; \qquad \boldsymbol{\xi} := \mathbf{0}; \end{split}$$

while
$$||f(\hat{\mathbf{z}} + W\xi)|| > \epsilon$$
 do
 $\Delta \xi := f(\hat{\mathbf{z}} + W\xi)/f'(\hat{\mathbf{z}} + W\xi);$
 $\xi := \xi + \Delta \xi.$

Yun Guan and Jan Verschelde (UIC)

• • • • • • • • • • • •

Numerical Stability

For some step size *h*, we evaluate

$$f(\mathbf{x} = \mathbf{z}_{\ell} + h(\mathbf{c} - \mathbf{z}_{\ell})) = f(\mathbf{z}_{\ell}) + O(h) = O(h).$$

If step size *h* is too large, then Newton is unlikely to converge. If step size *h* is too large, then $f(\mathbf{x} = \mathbf{z}_{\ell} + h(\mathbf{c} - \mathbf{z}_{\ell})) \gg h$. If $f(\mathbf{x} = \mathbf{z}_{\ell} + h(\mathbf{c} - \mathbf{z}_{\ell})) \gg h$, then reduce *h* immediately.

Do not wait for (costly) Newton corrector to fail.

We can control size of residual $||f(\xi)||$ to be always O(h).

A D N A B N A B N A B N

Generic Points on Algebraic Sets

- numerical representation of an algebraic set
- intrinsic coordinates save work
- sampling in intrinsic coordinates

Evaluation and Root Finding

- condition number estimates
- the numerical condition of polynomial evaluation
- the numerical condition of polynomial roots

Improving the Numerical Conditioning

- extrinsic, intrinsic, and local condition numbers
- a recentering algorithm and the numerical stability
- computational results on benchmark systems

Implementation and Benchmark Systems

Available since version 2.3.53 of PHCpack Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. *ACM Trans. Math. Softw.*, 25(2):251–276, 1999. http://www.math.uic.edu/~jan/download.html

Three classes, families of systems:

- **(1)** all adjacent minors of a general 2-by-*n* matrix, n = 3, 4, ..., 13
- 2 cyclic *n*-roots, n = 4, 8, 9 (an academic benchmark)
- Griffis-Duffy platforms and other systems from mechanical design

Computational experimental setup:

- given one set of generic points, generate another random *k*-plane
- move the given set of generic points to the new random k-plane
- check results for accuracy, #predictor-corrector steps, timings

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Computational Results

Characteristics of three families of polynomial systems:

polynomial system			n – k	d
1	Griffis-Duffy platform	8	1	40
2	cyclic 8-roots system	8	1	144
3	all adjacent minors of 2-by-11 matrix	22	12	1,024

n: number of variables, k: codimension, d: degree

Sampling in global intrinsic/local intrinsic coordinates:

system	#iterations	timings
1	207/164	550/535 μ sec
2	319/174	5.3/3.2 sec
3	285/219	44.6/40.3 sec

Done on a Mac OS X 3.2 Ghz Intel Xeon, using 1 core.

< 回 > < 三 > < 三 >

Conclusions

Advantages of using local intrinsic coordinates:

- only offset point moves during sampling
- keep sparse structure of the polynomials
- control step size by evaluation

Applications to numerical algebraic geometry:

- implicitization via interpolation
- monodromy breakup algorithm
- diagonal homotopies to intersect solution sets