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Representing a Space Curve

Consider the twisted cubic:

{
y − x2 = 0
z − x3 = 0

Important attributes are dimension and degree:

dimension: cut with one random plane,

degree: #points on the curve and in the plane.
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Witness Set for a Space Curve

Consider the twisted cubic:

{
y − x2 = 0
z − x3 = 0


y − x2 = 0
z − x3 = 0

c0 + c1x + c2y + c3z = 0

Intersect with a random plane c0 + c1x + c2y + c3z = 0
→ find three generic points on the curve.
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Generic Points on Algebraic Sets

A polynomial system f (x) = 0 defines an algebraic set f −1(0) ⊂ C
n.

We assume
1 f−1(0) is pure dimensional, k is codimension; and moreover
2 f (x) = 0 is a complete intersection, k = #polynomials in f .

For example, consider all adjacent minors of a general 2-by-3 matrix:[
x11 x12 x13

x21 x22 x23

]
f (x) =

{
x11x22 − x21x12 = 0
x12x23 − x22x13 = 0

n = 6, k = 2: dim(f−1(0)) = n − k = 4.

To compute deg(f −1(0)), add n − k general linear equations L(x) = 0
to f (x) = 0 and solve {f (x) = 0, L(x) = 0}.

→ 4 generic points for all adjacent minors of a general 2-by-3 matrix.
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Intrinsic Coordinates save Work
Generic points for all adjacent minors of a general 2-by-3 matrix satisfy
(for random coefficients cij ∈ C):

x11x22 − x21x12 = 0
x12x23 − x22x13 = 0

c10 + c11x11 + c12x12 + c13x13 + c14x21 + c15x22 + c16x23 = 0
c20 + c21x11 + c22x12 + c23x13 + c24x21 + c25x22 + c26x23 = 0
c30 + c31x11 + c32x12 + c33x13 + c34x21 + c35x22 + c36x23 = 0
c40 + c41x11 + c42x12 + c43x13 + c44x21 + c45x22 + c46x23 = 0


L−1(0) is a 2-plane in C

6, spanned by

x11

x12

x13

x21

x22

x23

 =



b1

b2

b3

b4

b5

b6

+ξ1



v11

v12

v13

v14

v15

v16

+ξ2



v21

v22

v23

v24

v25

v26


b is offset point

v1, v2 orthonormal basis

(ξ1, ξ2) intrinsic
coordinates
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A Commutative Diagram

f (x) = 0 a system of k polynomials in n variables x,

L(x) = 0 a system of n − k general linear equations in x,

b ∈ C
n is offset point, V = [v1 v2 · · · vk ], V HV = Ik .

Intrinsic coordinates ξ = (ξ1, ξ2, . . . , ξk ) for x:

x = b + ξ1v1 + ξ2v2 + · · · + ξkvk = b + Vξ.

Use f (x = b + Vξ) = 0 to compute generic points:

L

�

(b, V )

�
KE

�KI

x
�

ξ

||∆x||
||x|| ≤ KE

||∆L||
||L||

||∆ξ||
||ξ|| ≤ KI

||∆(b,V )||
||(b,V )||

We observe worsening of the numerical conditioning: KI � KE .
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Sampling in Intrinsic Coordinates

Represent L via (b, V ) and use intrinsic coordinates ξ ∈ C
k .

Moving from (b, V ) to (c, W ), as t goes from 0 to 1, homotopy:

f
(

x = (1 − t)b + tc + ((1 − t)V + tW ) ξ
moving offset point moving basis vectors

)
= 0.

Track paths ξ(t) via predictor-corrector methods.

Binomial expansion destroys sparse monomial structure of f .
For example, evaluate x a1

1 xa2
2 at x1 = b1 + ξ1v1 and x2 = b2 + ξ2v2:( a1∑

i=0

(
a1

i

)
bi

1(ξ1v1)
a1−i

) a2∑
j=0

(
a2

j

)
bj

2(ξ2v2)
a2−j

 .

In general: f (b + V (ξ + ∆ξ)) = f (b + Vξ) + ∆f , with very large ||∆f ||.
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Local Intrinsic Coordinates

What if we could keep ||ξ|| small?

(b1 + ξ1v1)
a1 (b2 + ξ2v2)

a2

=
(

ba1
1 + a1ba1−1

1 ξ1v1 + O(ξ2
1)
)(

ba2
2 + a2ba2−1

2 ξ2v2 + O(ξ2
2)
)

= ba1
1 ba2

2 + a1ba1−1
1 ba2

2 ξ1v1 + a2ba1
1 ba2−1

2 ξ2v2 + O(ξ2
1 , ξ1ξ2, ξ

2
2)

Now we have: f (b + Vξ) = f (b) + ∆f ,

where ||∆f || is O(||Vξ||) = O(||ξ||) as V is orthonormal basis.

Use extrinsic coordinates of generic point as offset point for k-plane:
for d = deg(f−1(0)) and d generic points {z1, z1, . . . , zd}:

x = z� + Vξ, � = 1, 2, . . . , d .

The local intrinsic coordinates are defined by ({z1, z1, . . . , zd}, V ).
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Origin and Assumptions

The problem has its origin in the implementation of
an intrinsic homotopy for intersecting algebraic varieties
J. Complexity 21(4):593-608, 2005 (with Sommese & Wampler).

Intrinsic coordinates were introduced to mitigate the doubling of the
number of variables in the diagonal homotopy.

Assumptions:

no rewriting of the equations for f (x) = 0;

the algebraic set we sample is reduced;

coefficients and solutions are well scaled; and

our working precision remains fixed.
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a Maple experiment

Via the companion matrix of a polynomial,
we relate the numerical conditioning of a root to that of an eigenvalue.

We use LinearAlgebra[EigenConditionNumbers] of Maple 12,
with default settings of the balance parameter, and
UseHardwareFloats set to true.

We consider one sparse polynomial f (5 terms) in n = 10 variables, of
increasing degrees d , with coefficients on the complex unit circle.

[> n := 10: d := 10: t := 5:
[> c := () -> exp(I*stats[random,uniform[0,2*Pi]](1)):
[> X := [seq(x[i],i=1..n)]:
[> f := X[1]^d + randpoly(X,coeffs=c,degree=d-1,terms=5)

+ sum(c()*x[i],i=1..n);
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Influence of Offset Point
Consider intrinsic coordinates once with and once without offset b:

x = b + vξ and x = vξ, b, v ∈ C
n,

With f (vξ) = 0 all coefficients are on the complex unit circle.
With f (b + vξ) = 0, the offset b causes the variation in the condition
numbers. The table displays inverse condition numbers:

d f (b + vξ) = 0 f (vξ) = 0 ratios of ratios of
largest smallest largest smallest smallest largest

10 5.9e-01 9.0e-02 8.8e-01 4.0e-01 6.6e+00 2.2e+00
20 2.8e-01 1.8e-03 8.9e-01 3.3e-01 1.6e+02 2.7e+00
30 2.8e-01 6.2e-05 9.5e-01 7.3e-02 4.5e+03 1.3e+01
40 4.5e-01 7.1e-06 9.7e-01 1.9e-01 6.3e+04 5.8e+00

The conditioning for f (b + vξ) = 0 worsens for increasing degree d ,
whereas for f (vξ) = 0, all roots of f (vξ) = 0 are well conditioned.
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Global versus Local

To compare the conditioning of global intrinsic with local intrinsic
coordinates, we first solve f (b + vξ) = 0 and take one root, say ξ = z.

Then let bz = b + vz so f (bz + vξ) = 0 has one solution ξ = 0
corresonding to z.

d f (b + vξ) = 0 f (bz + vξ) = 0
largest 2nd largest smallest largest 2nd largest smallest

10 5.9e-01 4.7e-01 6.2e-02 1.0e+00 2.8e-03 2.0e-06
20 4.0e-01 3.3e-01 6.7e-03 1.0e+00 9.9e-06 7.0e-11
30 2.5e-01 1.1e-01 8.1e-04 1.0e+00 4.0e-08 3.4e-11
40 5.6e-01 2.4e-01 1.4e-04 1.0e+00 1.5e-08 3.9e-11

For growing degree d , the condition of z of f (bz + vξ) = 0 is 1.0e+00,
while the condition of other roots worsens.
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Numerical Polynomial Evaluation

Definition (Demmel 1997, Applied Linear Algebra)
The relative condition number to evaluate a polynomial p of degree d in one
variable x with complex coefficients is

cond(p, x) =

d∑
i=0

|cix
i |

|p(x)| for p(x) =
d∑

i=0

cix
i with ci ∈ C.

Observe:

At p(x) = 0: cond(p, x) = ∞, an ill-posed problem.

For bounded cond(p, x), we evaluate at x : |x | ≈ 1.
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Global versus Local

We compare evaluating a polynomial p
1 at x = b + vξ, for random b, v ∈ C, |b| = 1, |v | = 1; and
2 at x = z + vh, with v ∈ C as above and h: 0 < |h| � 1.

With 0 < |h| � 1, we neglect O(h2) terms.
The equation b + vξ = z + vh defines the relation between ξ and z.

Lemma (monomial evaluation)
For d > 1, |b| = 1, |v | = 1, |z| = 1, and 0 < |h| � 1, the ratio

cond(xd , x = b + vξ)

cond(xd , x = z + vh)
≤ 3d

1 − O(h)

compares the condition of evaluating x d as a polynomial in ξ
to xd as a polynomial in h.

Proof Idea: apply binomial expansion.
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Polynomials in one Variable

Proposition

Let p =
d∑

i=0

cix
i . For |b| = 1, |v | = 1, |z| = 1, |p(z)| � |h|,

and 0 < |h| � 1:
cond(p, x = b + vξ)

cond(p, x = z + vh)
≤

d∑
i=0

|ci |3i

|p(z)| − O(h)
.

Proof Idea: apply triangle inequalities.

Corollary

For |ci | = 1 in p, the ratio
cond(p, x = b + vξ)

cond(p, x = z + vh)
≤ 1

2
3d+1 − 1

|p(z)| − O(h)

compares the condition of evaluating p as a polynomial in ξ
to p as a polynomial in h.
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Polynomials in several Variables

Definition
The relative condition number to evaluate a sparse polynomial f in n
variables, with support set A ∈ N

n, #A < ∞, is

cond(f , x) =

∑
a∈A

|caxa|

|f (x)| ,

for
f (x) =

∑
a∈A

caxa, ca ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n .

The degree of f is

deg(f ) := max
a∈A

(a1 + a2 + · · · + an) .
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Global versus Local

We compare evaluating a sparse polynomial f at x = b + vξ
to evaluating f at x = z + vh.

Theorem

Let f =
∑
a∈A

caxa. For |bi | = 1, |vi | = 1, |zi | = 1, i = 1, 2, . . . , n,

|f (z)| � |h|, and 0 < |h| � 1:

cond(f , x = b + vξ)

cond(f , x = z + vh)
≤

∑
a∈A

|ca|3a1+a2+···+an

|f (z)| − O(h)
.

Proof Idea: apply binomial expansion and triangle inequalities.
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Roots as Eigenvalues

We define the condition number of roots of a polynomial in one variable
via the condition numbers of the eigenvalues of the companion matrix.

Definition (Tyrtyshnikov 1997, numerical analysis textbook)
Let Cp be the companion matrix of a polynomial p in one variable x and with
complex coefficients.

Solutions to p(x) = 0 are eigenvalues denoted by z with corresponding right
eigenvectors r ∈ C

n: Cpr = zr and left eigenvectors q ∈ C
n: qHCp = qHz.

The condition number κ(p, z) of a zero z of p with corresponding left and
right eigenvectors qz and rz is

κ(p, z) =
||qz ||2||rz ||2

|qH
z rz |

.
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Roots of Unity

We consider polynomials with perfectly conditioned roots.

Lemma

Consider p = xd − 1. For all z, p(z) = 0, we have κ(p, z) = 1.

Proof Idea: eigenvectors are powers of a root.

Notes:

With eigenvalues we ignore the sparsity of p.

Distances between the roots decrease as d increases.

Sparse condition numbers are ε/d for perturbations ε.
See Questions of numerical condition related to polynomials
[Gautschi 1984].
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Perturbed Roots of Unity

Lemma

Let v ∈ C, |v | = 1, and h, 0 < |h| � 1 consider p = (x + vh)d − 1.
For all z, p(z) = 0 we have κ(p, z) = 1 + O(h).

Proof Idea: view companion matrix of p as Cp(h) = Cp + C1h + O(h2).

Consider p(x) = (b + vx)d − 1 = 0
for constants b and v on the complex unit circle.

Our notion of numerical conditioning is algebraic, not geometric.

In the geometric point of view, the roots of p compared
to those of xd − 1 are merely translated.

As this translation preserves the distance between the roots
one would not expect a worsening of the condition number.
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Shifted Roots of Unity

Lemma

Let b, v ∈ C, |b| = 1, |v | = 1, and consider p = (b + xv)d − 1.

For all z, p(z) = 0 we have κ(p, z) ≤ d
√

4dΓ(d+1/2)√
πΓ(d+1)

.

Proof Idea: apply the theorem of Bauer-Fike and Maple 12 to bound a

spectral radius via
d∑

i=0

(
d
i

)2

=
4dΓ(d + 1/2)√

πΓ(d + 1)
.

Because log2

(√
4dΓ(d + 1/2)√

πΓ(d + 1)

)
increases fairly linearly and is

bounded by d − 1, we replace

√
4dΓ(d + 1/2)√

πΓ(d + 1)
by 2d−1.
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Comparing Condition Numbers

The lemmas imply

Theorem
Let b, v ∈ C, |b| = 1, |v | = 1, and h such that 0 < |h| � 1.
Then, the ratio

κ
(
(b + vx)d − 1, z

)
κ
(
(x + vh)d − 1, z

) ≤ 2d−1 − O(h)

compares the conditioning of the solutions of (b + vx)d − 1 = 0
with the solutions of (x + vh)d − 1 = 0.

The upper bound of the theorem is attained for the case of
(−1 + x)d − 1 = 0 where 2 is a solution and powers of 2
appear in the companion matrix.
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an isolated Root of a Polynomial System

Definition (Rheinboldt, 1976)
Let f (x) = 0 be a polynomial system of n equations in n unknowns.
Denote the Jacobian matrix of f by Jf and let z ∈ C

n be an isolated solution.
Then, the relative condition number of the zero z as a solution of f (x) = 0 is

κ(f , z) = ||Jf (z)||2||J−1
f (z)||2,

i.e.: κ(f , z) is the condition number of the Jacobian matrix of the polynomials
in the system evaluated at z.

Notes:

In Newton’s method we solve Jf (x)∆x = −f (x).

We have ||C||2 =
√

ρ(CHC) where ρ(·) is the spectral radius.
For univariate f , we use the companion matrix for C.

κ(f , z) is local: for one solution z and particular: it depends on the
coefficients of f , determined by a coordinate system.
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Numerical Condition of generic Points
Definition (extrinsic, intrinsic, local condition number)

Let z ∈ C
n be a generic point on an (n − k)-dimensional component of

f−1(0), satisfying k linear equations L(z) = 0. Then, the relative extrinsic
condition number of z, as a generic point on f−1(0) ∩ L is

κE (f , L, z) = κ(f = (f , L), z).

Writing the solutions to the linear equations L(x) = 0 as x = b + Vξ,
for some offset point b and orthonormal matrix V ∈ C

n×k , we have
z = b + Vξz , where ξz are the intrinsic coordinates of z. Then, the relative
intrinsic condition number of z, as a generic point of f−1(0) is

κI(f , b, V , z) = κ(f = f (b + Vξz), ξz).

The relative local intrinsic condition number of z as a generic point on
f−1(0) is

κL(f , V , z) = κ(f = f (z + Vξ), ξ = 0).
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the Test Equation in extrinsic Coordinates

Similar to xd − 1 = 0, we consider the multivariable version
as test equation xa − 1 = 0, a = (a1, a2, . . . , an).

Lemma

Let f = xa − 1 = 0, xa = xa1
1 xa2

2 · · · xan
n , denote d = a1 + a2 + · · · + an.

There is a choice for the coefficients of L defining a generic point z,
f (z) = 0, L(z) = 0 so κE (f , L, z) ≤ d2.

Our proof considers the Jacobian matrix of f (x) = 0
with the coefficients of L(x) = 0 as indeterminates.

Note that z is not considered as given (and thus fixed), because
otherwise we could still obtain a badly scaled Jacobian matrix.
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the Test Equation in intrinsic Coordinates

We consider the condition of intrinsic coordinates of our test equation.

Lemma

Let z ∈ C
n be a generic point of f (x) = xa − 1 = 0, xa = xa1

1 xa2
2 · · · xan

n ,
d = a1 + a2 + · · · + an.
Let z = b + vξz for some offset point b and a vector v.
Then κI(f , b, v, ξz) ≤ 2d−1.

Apply repeated substitution to reduced to the univariate case

and use 2d−1 for the expression
√

4dΓ(d+1/2)√
πΓ(d+1)

.

The bound is pessimistic but is attained in bad cases.
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the Test Equation in local intrinsic Coordinates

Lemma
Consider x = z + vξ for some vector v, ||v||2 = 1, and z ∈ C

n a generic
point for f (x) = xa − 1. Then, κL(f , v, z) = 1.

To summarize:

Theorem
For a generic point z for the equation f (x) = xa − 1 = 0, with
d = deg(f ), we have:

κL(f , v, z) ≤ κE(f , L, z) ≤ κI(f , b, v, z) ≤ 2d−1,

where z lies on some generic line with offset b, direction v, and linear
equations L(x) = 0.
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Sampling in Local Intrinsic Coordinates

Generic points {z1, z1, . . . , zd} are offset points for k-plane L
with directions in the orthonormal matrix V .

Moving from (z�, V ) to (b, W ), as t goes from 0 to 1, homotopy:

f (x = (1 − t)z� + tb + Wξ) = 0

→ only the offset point moves!

Instead of moving to b, let c be the orthogonal projection of z�

onto the k-plane L.

For some step size h, consider:

f (x = z� + h(c − z�) + Wξ) = 0

and apply Newton’s method to find the correction ∆ξ.
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Schematic of the new Sampling Algorithm
one predictor-corrector step
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pseudocode for one predictor-corrector step

Input: b ∈ C
n, W = [w1 w2 · · · wk ] ∈ C

n×k , W ∗W = Ik
z ∈ C

n, f (z) = 0, K (z) = 0, h > 0, ε > 0, some L.

Output: ẑ, f (ẑ) = 0: ẑ closer to L.

v := z − b; v := v −
k∑

i=1

(wi
T v)wi ; v := v/||v||;

z̃ := z + h v; ẑ := z̃; ξ := 0;

while ||f (ẑ + Wξ)|| > ε do
∆ξ := f (ẑ + Wξ)/f ′(ẑ + Wξ);
ξ := ξ + ∆ξ.
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Numerical Stability

For some step size h, we evaluate

f (x = z� + h(c − z�)) = f (z�) + O(h) = O(h).

If step size h is too large, then Newton is unlikely to converge.

If step size h is too large, then f (x = z� + h(c − z�)) � h.

If f (x = z� + h(c − z�)) � h, then reduce h immediately.

Do not wait for (costly) Newton corrector to fail.

We can control size of residual ||f (ξ)|| to be always O(h).
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Outline

1 Generic Points on Algebraic Sets
numerical representation of an algebraic set
intrinsic coordinates save work
sampling in intrinsic coordinates

2 Evaluation and Root Finding
condition number estimates
the numerical condition of polynomial evaluation
the numerical condition of polynomial roots

3 Improving the Numerical Conditioning
extrinsic, intrinsic, and local condition numbers
a recentering algorithm and the numerical stability
computational results on benchmark systems
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Implementation and Benchmark Systems

Available since version 2.3.53 of PHCpack
Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math. Softw., 25(2):251–276, 1999.
http://www.math.uic.edu/˜jan/download.html

Three classes, families of systems:

1 all adjacent minors of a general 2-by-n matrix, n = 3, 4, . . . , 13
2 cyclic n-roots, n = 4, 8, 9 (an academic benchmark)
3 Griffis-Duffy platforms and other systems from mechanical design

Computational experimental setup:

given one set of generic points, generate another random k-plane

move the given set of generic points to the new random k-plane

check results for accuracy, #predictor-corrector steps, timings
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Computational Results
Characteristics of three families of polynomial systems:

polynomial system n n − k d

1 Griffis-Duffy platform 8 1 40
2 cyclic 8-roots system 8 1 144
3 all adjacent minors of 2-by-11 matrix 22 12 1,024

n: number of variables, k : codimension, d : degree

Sampling in global intrinsic/local intrinsic coordinates:

system #iterations timings

1 207/164 550/535 µsec
2 319/174 5.3/3.2 sec
3 285/219 44.6/40.3 sec

Done on a Mac OS X 3.2 Ghz Intel Xeon, using 1 core.
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Conclusions

Advantages of using local intrinsic coordinates:

only offset point moves during sampling

keep sparse structure of the polynomials

control step size by evaluation

Applications to numerical algebraic geometry:

implicitization via interpolation

monodromy breakup algorithm

diagonal homotopies to intersect solution sets
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