
PHCpack is a package for polynomial homotopy
continuation to solve polynomial systems. ACM
Transactions on Mathematical Software has archived version 1.0
as Algorithm 795, vol. 25, no. 2, pages 251--276, 1999.

Two blackbox solvers in phcpy can compute:
1) the isolated solutions of a polynomial system.
2) a numerical irreducible decomposition, i.e., all solution
sets of the system.

phcpy exposes the functionality of PHCpack to Python scripts.
Computationally intensive algorithms are executed efficiently by
the compiled code.

DISCUSSION

Usage of phcpy has been reported in research literature:
Symbolic computation – # embeddings of minimally rigid graphs

(Bartzos, Emiris, Legersky, and Tsigaridas, 2018)

Pure math – Roots of Alexander polynomials
(Culler and Dunfield, 2018)

Chemical engineering – Critical points of equilibrium problems
(Sidky, Whitmer, and Mehta, 2016)

Numerical algebraic geometry is currently used in other fields
whose models rely on nonlinear polynomial systems:

Rigid-body mechanisms – Algebraic kinematics for synthesis and
control of motion, e.g. in robotics or animation.

(Wampler and Sommese, 2011)

Systems biology – Model selection via analysis of steady states,
e.g. in pathway analysis or disease modeling.

(Gross, Davis, Ho, Bates, and Harrington, 2016)

We can numerically solve
polynomial systems in phcpy,
using fast and reliable
homotopy continuation
methods.

A web interface to phcpy is online at
www.phcpack.org , a notebook with

Python and SageMath kernels, available for public use with a free account.

This material is based
on work supported by
the National Science
Foundation under
Grant 1440534.

TUTORIALS math.uic.edu/~jan/phcpy_doc_html/usecases.html

(right) Given 5 precision points,
design a 4-bar mechanism.

(below) Compute all circles that
touch three given circles.

The phcpy documentation includes
these tutorials. Further use cases
are documented in our paper,
conference.scipy.org/proceedings/
scipy2019/pdfs/jan_verschelde.pdf

INTERACTIVE PARALLELISM
def qualityup(nbtasks=0, precflag='d'):

from phcpy.families import cyclic
from phcpy.solver import solve
from time import perf_counter
c7 = cyclic(7)
tstart = perf_counter()
s = solve(c7, verbose=False, tasks=nbtasks,\

precision=precflag, checkin=False)
return perf_counter() - tstart

The blackbox solver’s elapsed performance
in double, double double, and quad double precision:

The overhead of extra precision is compensated
by multithreading.

Interpolated elapsed performances for quad double arithmetic:

precision d dd qd

Elapsed
performance

5.45 42.41 604.91

Overhead
factor

1.00 7.41 110.99

tasks 8 16 32

dd 7.56 5.07 3.88

qd 96.08 65.82 44.35

Solving Polynomial Systems with phcpy
Jasmine T. Otto*, Angus G. Forbes*, Jan Verschelde†

jtotto@ucsc.edu angus@ucsc.edu janv@uic.edu
* University of California Santa Cruz, † University of Illinois at Chicago

SOLUTION SETS
A numerical irreducible decomposition includes representations for all
positive dimensional solution sets.

Consider two equations defining the twisted cubic:
pols = ['x*y - z;', 'x^2 – y;']

(1) A witness set provides generic points:
from phcpy.sets import embed
from phcpy.solver import solve
embp = embed(3, 1, pols)
sols = solve(embp, verbose=False)
print('#generic points :', len(sols))

Three points lie at the intersection of this cubic with a random plane.

(2) A series expansion develops from some point(s) in a coordinate
hyperplane. For the twisted cubic, the series is exact after the first term.

from phcpy.maps import solve_binomials
maps = solve_binomials(3, pols, puretopdim=True)
for sol in maps: print(sol)

The solution gives (t,t2,t3), the parametric representation of the twisted cubic.

