
GPU Acceleration of
Polynomial Homotopy Continuation

Jan Verschelde
joint work with Xiangcheng Yu

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
emails: janv@uic.edu and xiangchengyu@outlook.com

The SIAM conference on Parallel Processing for Scientific Computing
Université Pierre et Marie Curie, Paris, France, 12-15 April 2016

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 1 / 20



Outline

1 Polynomial Homotopy Continuation
compensating for the cost of extra precision
the problems with path tracking

2 Accelerated Path Tracking
monomial evaluation and differentiation
arithmetic circuits to evaluate and differentiate
tracking paths in Single Instruction Multiple Threads mode

3 Applications and Computational Results
hardware and software
speedup and quality up

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 2 / 20



polynomial homotopy continuation methods

f(x) = 0 is a polynomial system we want to solve,
g(x) = 0 is a start system (g is similar to f) with known solutions.

A homotopy h(x, t) = (1 − t)g(x) + t f(x) = 0, t ∈ [0,1],
to solve f(x) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Numerical continuation methods track the paths x(t), from t = 0 to 1.

Problem statement: when solving large polynomial systems, the
hardware double precision may not be sufficient for accurate solutions.

Our goal: accelerate computations with general purpose
Graphics Processing Units (GPUs) to compensate for the overhead
caused by double double and quad double arithmetic.

Our first results (jointly with Genady Yoffe) on this goal
with multicore computers are in the PASCO 2010 proceedings;
also at SIAM PP 2010, High Performance Symbolic Computing.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 3 / 20



quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by
M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 4 / 20



one coordinate of a solution path

x-real
−0.5

0.0

0.5

1.0

x-im
ag

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

t

0.0

0.2

0.4

0.6

0.8

1.0

correct

predict

divergent

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 5 / 20



Why is this difficult?

Tracking of one single path with the predictor-corrector method is a
strictly sequential process.

Although we compute many points on a solution path, we cannot
compute those points in parallel, independently from each other.

In order to move to the next point on the path,
the correction for the previous point must be completed.

This difficulty requires
a fine granularity in the parallel algorithm; and
a sufficiently high enough threshold on the dimension.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 6 / 20



some related work in algorithmic differentiation
M. Grabner, T. Pock, T. Gross, and B. Kainz. Automatic differentiation for
GPU-accelerated 2D/3D registration. In Advances in Automatic Differentiation,
pages 259–269. Springer, 2008.
G. Kozikowski and B.J. Kubica. Interval arithmetic and automatic differentiation
on GPU using OpenCL. In PARA 2012, LNCS 7782, pages 489-503, Springer
2013.

some related work in polynomial system solving
R.A. Klopotek and J. Porter-Sobieraj. Solving systems of polynomial equations
on a GPU. In Preprints of the Federated Conference on Computer Science and
Information Systems, September 9-12, 2012, Wroclaw, Poland, pages 567–572,
2012.
M.M. Maza and W. Pan. Solving bivariate polynomial systems on a GPU. ACM
Communications in Computer Algebra, 45(2):127–128, 2011.

some related work in numerical linear algebra
D. Mukunoki and D. Takashashi. Implementation and evaluation of triple precision
BLAS subroutines on GPUs. In Proceedings of PDSEC 2012, pages 1372–1380.
IEEE Computer Society, 2012.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 7 / 20



accelerated predictor-corrector methods
A path tracker has three ingredients:

1 The predictor applies an extrapolation method for the next point.
Each coordinate is predicted independently, linear cost in n.

2 The corrector applies a couple of steps with Newton’s method.
Denote by Jf the matrix of all partial derivatives of f,

Jf(x)∆x = −f(x), x := x +∆x.

3 The adaptive step length control sets the value for the step size.

When tracking one path, the step length control can be done on the
host, as only some doubles are needed in the transfer.

The device computes ‖∆x‖ and ‖f(x)‖; and
then sends ‖∆x‖ and ‖f(x)‖ to the host.
The host computes a new value for the step size ∆t ; and
sends ∆t to device.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 8 / 20



polynomial evaluation and differentiation

We distinguish three stages:
1 Common factors and tables of power products:

xd1
1 xd2

2 · · · xdn
n = xi1xi2 · · · xik × x

ej1
j1

x
ej2
j2

· · · xej�
j�

The factor x
ej1
j1

x
ej2
j2

· · · xej�
j�

is common to all partial derivatives.
The factors are evaluated as products of pure powers of the
variables, computed in shared memory by each block of threads.

2 Evaluation and differentiation of products of variables:
Computing the gradient of x1x2 · · · xn with the reverse mode of
algorithmic differentiation requires 3n − 5 multiplications.

3 Coefficient multiplication and term summation.
Summation jobs are ordered by the number of terms so each
warp has the same amount of terms to sum.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 9 / 20



collaborating threads – a parallel scan

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 10 / 20



an arithmetic circuit for the gradient of x0x1 · · · x7

Denote by xi:j the product xi � · · · � xk � · · · � xj for all k between i and j .

x0

�

x1

�

x2

�

x3

�

x4

�

x5

�

x6

�

x7

�

x0 � x2:7 x1 � x2:7 x2 � x0:1x4:7 x3 � x0:1x4:7 x4 � x0:3x6:7 x5 � x0:3x6:7 x6 � x0:5 x7 � x0:5

x0:3 ����������������������������

������������������
x0:3 � x4:5

�����������

����������������

x0:3 � x6:7
�����������

������	

x0:1

�

x2:3

�

x4:5

�

x6:7

�

x4:7


























�

������������������
x0:1 � x4:7

�����������

����������������

x2:3 � x4:7
������������

�������	

The computation of the gradient of x0x1 · · · xn−1 requires
2n − 4 multiplications, and
n − 1 extra memory locations.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 11 / 20



SIMT Path Tracking (SIMT = Single Instruction Multiple Threads)

We run the same arithmetic circuit at different data:
threads are evaluating and differentiation the same polynomials,
at different approximations for the solutions along the path.

path0 path1 path2
predict predict predict
evaluate evaluate evaluate
correct correct correct
evaluate evaluate
correct correct

evaluate
correct

The three stages in a predictor-corrector algorithm are:
1 predict: apply extrapolation to predict the next approximation,
2 evaluate: evaluate and differentiate the polynomials in the system,
3 correct: solve a linear system in Newton’s method.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 12 / 20



ordering the jobs to track paths

In order for approximations to reach the required accuracy,
some paths need two or three steps in Newton’s method.

The labels to the jobs correspond to the indices of each path:

path0 path1 path2
predict predict predict
evaluate evaluate evaluate
correct correct correct
evaluate evaluate
correct correct

evaluate
correct

job0 job1 job2
predict0 predict1 predict2
evaluate0 evaluate1 evaluate2
correct0 correct1 correct2
evaluate0 evaluate2
correct0 correct2
evaluate2
correct2

Every path has its own current value of the continuation parameter t .

The adaptive step size control is executed on the device.

The length of the total execution time is bounded from below
by the time required for the most difficult path.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 13 / 20



hardware and software

Our NVIDIA Tesla K20C, has 2496 cores with a clock speed of
706 MHz, is hosted by a Red Hat Enterprise Linux workstation of
Microway, with Intel Xeon E5-2670 processors at 2.6 GHz.

We implemented the path tracker with the gcc compiler and version 6.5
of the CUDA Toolkit, compiled with the optimization flag -O2.

The code is free and open source, at github.
https://github.com/janverschelde/PHCpack

The benchmark data were prepared with phcpy,
the Python interface to PHCpack.

The GPU accelerated path trackers are accessible to the Python
programmer via phcpy.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 14 / 20



applications: the polynomial systems

Summarizing the characteristics:

name dim #paths #monomials
cyclic10 10 34,940 92
nash8 8 14,833 1,040

pieri44 16 24,024 3,936

Application areas:
cyclic10: study of biunimodular vectors,
nash8: totally mixed Nash equilibria in a game,
pieri44: a problem from enumerative geometry.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 15 / 20



tracking paths for cyclic 10-roots
Times in seconds and speedups for tracking a number of paths
of the cyclic 10-roots system.

complex double complex double double
#paths CPU GPU speedup CPU GPU speedup

10 0.040 0.128 0.31 0.563 0.344 1.63
20 0.075 0.139 0.54 1.082 0.386 2.80
50 0.158 0.147 1.07 2.248 0.404 5.56

100 0.277 0.155 1.79 3.706 0.421 8.81
200 0.482 0.181 2.67 6.480 0.458 14.15
500 1.239 0.250 4.96 16.802 0.729 23.05

1000 2.609 0.432 6.03 35.683 1.315 27.14
2000 5.341 0.768 6.96 83.601 2.397 34.87
5000 13.358 1.711 7.81 210.287 5.246 40.09

10000 26.562 3.334 7.97 414.332 10.063 41.18

Quality Up!

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 16 / 20



visualization of the speedups

10 20 50 100 200 500 1000 2000 5000 10000

tracking m paths of cyclic 10-roots, for m from 10 to 10,000

0

20

40

60

80

100

s
p
e
e
d
u
p
s
a
re

(a
c
c
e
le
ra
te
d
ti
m
e
)/
(t
im

e
o
n
o
n
e
C
P
U
c
o
re
)

speedups of accelerated path tracking on cyclic 10-roots

double

double double

quad double

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 17 / 20



GPU Acceleration with Python
To compute all isolated solutions of the the cyclic 10-roots problem
(cyc10), we need to track 35,940 solution paths.

The Python scripting interface to PHCpack is phcpy:

from phcpy.trackers import gpu_double_track
cyc10sols = gpu_double_track(cyc10, cyc10q, \

cyc10qsols, verbose=0)

To time the execution, at the command prompt we type
$ time python runcyc10d.py > /tmp/output .

precision real user sys
double 14.980s 11.683s 3.192s

double double 45.266s 35.897s 9.228s
quad double 6m 57.368s 5m 23.224s 1m 33.266s

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 18 / 20



conclusions

We can compensate for the cost of double double arithmetic
when tracking one solution path with GPU acceleration.

Double double and quad double arithmetic (using QD):
memory bound for double and (real) double double arithmetic,
compute bound for complex double doubles and quad doubles.

Double digit speedups ⇒ double the precision, compute twice as fast.

We achieve not only speedup, but also quality up, and in some hard
cases double precision is insufficient for a successful path tracking.

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 19 / 20



our papers
Solving polynomial systems in the cloud with polynomial homotopy
continuation. (with N. Bliss, J. Sommars, and X. Yu).
Proceedings of CASC 2015. arXiv:1506.02618
Evaluating polynomials in several variables and their derivatives on a
GPU computing processor. (with G. Yoffe). Proceedings of PDSEC 2012.
arXiv:1201.0499

Orthogonalization on a general purpose graphics processing unit with
double double and quad double arithmetic. (with G. Yoffe).
Proceedings of PDSEC 2013. arXiv:1210.0800
Acceleration of Newton’s method for large systems of polynomial
equations in double double and quad double arithmetic. (with X. Yu).
Proceedings of HPCC 2014. arXiv:1402.2626
Accelerating polynomial homotopy continuation on a graphics
processing unit with double double and quad double arithmetic.
(with X. Yu). Proceedings of PASCO 2015. arXiv:1501.06625
Tracking many solution paths of a polynomial homotopy on a graphics
processing unit with double double and quad double arithmetic.
(with X. Yu). Proceedings of HPCC 2015. arXiv:1505.00383

Jan Verschelde (UIC) GPU Accelerated Path Tracking SIAM PP 2016 20 / 20


