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polynomial homotopy continuation

A polynomial homotopy is a family of polynomial systems,
where the systems in the family depend on one parameter.

For example, the homotopy

h(x, t) = γ(1 − t)g(x) + t f (x) = 0, random γ ∈ C,

connects
the target system f (x) = 0, at t = 1, to the
the start system g(x) = 0, at t = 0.

Continuation methods apply path tracking algorithms
to track solution paths x(t) starting at solutions of g(x) = 0
and ending at the solutions of f (x) = 0.
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parameter continuation schematic in C
using random γ ∈ C
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step size control

Consider homotopies in one single parameter and assume
1 no singularity on each path, and
2 no diverging paths,

except perhaps at the end of the path.

Problem: determine the step size of the path tracker.
Too small: inefficient.
Too large: jump off the path, possibly onto another path.
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the path jumping problem

Curves are far apart, with high curvature:

Curves are close to each other, with low curvature:
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alternatives to numerical continuation

Numerical continuation applies an adaptive step size control
in a predictor-corrector method with double precision arithmetic.

Alternatives to numerical continuation:
intervals, parallelotopes, or ball arithmetic
[Kearfott and Xing, 1994], [Martin, Goldsztejn, Granvilliers,
Jermann, 2013], [Lecerf and van der Hoeven, 2016];
symbolic deformation methods
[Jeronimo, Matera, Solernó, and Waissbein, 2009],
[Hauenstein, Safey El Din, Schost, Vu, 2021];
certified homotopy tracking
[Beltrán and Leykin, 2013], [Xu, Burr, and Yap, 2018].

(The above list of references contains just a sample.)
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Padé approximants as predictors

1 H. Schwetlick and J. Cleve. Higher order predictors and
adaptive steplength control in path following algorithms.
SIAM Journal on Numerical Analysis, 24(6):1382–1393, 1987.

2 A. Trias. The holomorphic embedding load flow method.
In 2012 IEEE Power and Energy Society General Meeting,
pages 1–8. IEEE, 2012.

3 A. Trias and J. L. Martin. The holomorphic embedding loadflow
method for DC power systems and nonlinear DC circuits.
IEEE Transactions on Circuits and Systems, 63(2):322–333, 2016.

The holomorphic embedding load flow method takes the poles
of the Padé approximants into account in its step size control.
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detecting nearby singularities

Applying the ratio theorem of Fabry, we can detect singular points
based on the coefficients of the Taylor series.

Theorem (the ratio theorem, Fabry 1896)

If for the series x(t) = c0 + c1t + c2t2 + · · ·+ cntn + cn+1tn+1 + · · · ,
we have lim

n→∞
cn/cn+1 = z, then

z is a singular point of the series, and
it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is |z|.

The ratio cn/cn+1 is the pole of Padé approximants of degrees [n/1]
(n is the degree of the numerator, with linear denominator).

Jan Verschelde (UIC) Avoiding and Computing Singularities 6 November 2023 11 / 48



the ratio theorem of Fabry and Padé approximants

Consider n = 3, x(t) = c0 + c1t + c2t2 + c3t3 + c4t4.

[3/1] =
a0 + a1t + a2t2 + a3t3

1 + b1t

(c0 + c1t + c2t2 + c3t3 + c4t4)(1 + b1t) = a0 + a1t + a2t2 + a3t3

c0 + c1t + c2t2 + c3t3 + c4t4

+ b1c0t + b1c1t2 + b1c2t3 + b1c3t4 = a0 + a1t + a2t2 + a3t3

We solve for b1 in the term for t4: c4 + b1c3 = 0 ⇒ b1 = −c4/c3.

The denominator of [3/1] is 1 − c4/c3t . The pole of [3/1] is c3/c4.
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an example not covered by Fabry’s theorem

h(x , t) = x2 − (t − 1)4 = (x − (t − 1)2)(x + (t − 1)2) = 0
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analytic continuation and extrapolation methods

How many terms in the Taylor series are needed
to accurately locate a singularity?

Peter Wynn. The rational approximation of functions which
are formally defined by a power series expansion.
Math. Comp. 14(70): 147–186, 1960.
Peter Henrici. An algorithm for analytic continuation.
J. SIAM Numer. Anal., 3(1): 67–78, 1966.
Claude Brezinski and Michela Redivo Zaglia.
Extrapolation Methods. Elsevier, 1991.
Avrim Sidi. Practical Extrapolation Methods. Theory and
Applications. Cambridge University Press, 2003.
Lloyd Nicholas Trefethen. Approximation Theory and
Approximation Practice. SIAM, 2013.
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difference with Cauchy integrals

Use function values around the regular point at 0
to compute the coefficients of the Taylor series:

r

t0 1

Use function values around the singularity at 1
to compute the coefficients of the Laurent series:

r

t0 1

In both cases, what is a good step size r?
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linearization

Working with truncated power series, computing modulo O(td),
is doing arithmetic over the field of formal series C[[t ]].

Linearization: consider Cn[[t ]] instead of C[[t ]]n. Instead of a vector of
power series, we consider a power series with vectors as coefficients.

Solve Ax = b, A ∈ Cn×n[[t ]], b,x ∈ Cn[[t ]].

A = A0ta + A1ta+1 + · · · ,
b = b0tb + b1tb+1 + · · ·
x = x0tb−a + x1tb−a+1 + · · ·

where Ai ∈ Cn×n and bi ,xi ∈ Cn.
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block linear algebra

Computing the first d terms of the solution of Ax = b:(
A0ta + A1ta+1 + A2ta+2 + · · ·+ Ad ta+d)
·
(
x0tb−a + x1tb−a+1 + x2tb−a+2 + · · ·+ xd tb−a+d)

= b0tb + b1tb+1 + b2tb+2 + · · ·+ bd tb+d .

Written in matrix format:
A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .

If A0 is regular, then solving Ax = b is straightforward.
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error analysis of a lower triangular block Toeplitz solver
Solving (A0 + A1t + A2t2 + · · ·+ Ad td)(x0 + x1t + x2t2 + · · ·+ xd td)

= (b0 + b1t + b2t2 + · · ·+ bd td)
leads to a lower triangular block system:

A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .

Cost to solve: O(n3) + O(dn2).

Let κ be the condition number of A0. Let ∥A0∥ = ∥x0∥ = 1, ∥xd∥ ≈ ρd .

In our context, ρ ≈ 1/R, where R is the convergence radius.

If ∥Ad∥ ≈ ρd , then
∥∆xd∥
∥xd∥

≈ κd+1ϵmach, and accuracy is lost.
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order of series, accuracy and precision

exp(t) =
d−1∑
k=0

tk

k !
+ O(td)

k 1/k ! recommended precision eps

7 2.0e-004 double precision okay 2.2e-16
15 7.7e-013 use double doubles 4.9e-32
23 3.9e-023 use double doubles
31 1.2e-034 use quad doubles 6.1e-64
47 3.9e-060 use octo doubles 4.6e-128
63 5.0e-088 use octo doubles
95 9.7e-149 need hexa doubles 5.3e-256

127 3.3e-214 need hexa doubles

GPUs capable of teraflop performance can compensate the cost
overhead caused by quad double arithmetic.
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a posteriori and a priori step size control

We solve a polynomial system with a homotopy h(x, t) = 0.
An a posteriori step size control uses feedback loops.

∆t := β∆t
- predictor - corrector -t

6

∥h(y(∆t),∆t)∥ > α

t
6

∥h(z(∆t),∆t)∥ > ϵ

Extreme choices for α and ϵ (not recommended):
If α ≤ ϵ, then the corrector is not needed.
If α = ∞, then the first feedback loop does never happen.

Setting 0.5 for β cuts the step size ∆t in half.

An a priori step size control does not need feedback loops.
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estimating the distance to the nearest path
Consider a Taylor series expansion of the homotopy at one path,
truncated after degree 2, to estimate the distance to the nearest path.

The distance ∥∆z∥ to the nearest path is estimated by

η =
2σn(Jh)√

σ2
1,1 + σ2

2,1 + · · ·+ σ2
n,1

≲ ∥∆z∥,

where
σn(Jh) is the smallest singular value of the Jacobian matrix,
σi,1 is the largest singular value of the Hessian matrix
at the i-th polynomial in the homotopy h.

With Padé approximants pi/qi we compute an estimate for the error e0:∥∥∥∥x(∆t)−
(

p1(∆t)
q1(∆t)

, . . . ,
pn(∆t)
qn(∆t)

)∥∥∥∥ ≈ ∥e0∥ |∆t |k ,

where k is determined by the degrees of the Padé approximants.
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schematic summary of a priori step size control

(h, Jh, z
(i)
t∗ , t

∗)
����)

PPPPq

Newton

Padé

Differentiate

SVD

x(t) power series Hi Hessians

pj (t)
qj (t)

∥e0∥
XXXXXz

σn(Jh) σ1(Hk )
? ?

? ?

∆t2 = β2D ‘pole distance’ ∆t1 = k
√

β1η
∥e0∥ ‘curvature bound’

PPPPPPq

������)

∆t = min(∆t1,∆t2, tend game − t∗)

The values β1 and β2 are experimentally defined tolerances.
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cost analysis

For n variables,
the cost of the linear algebra is O(n4),
the cost to differentiate and evaluate n Hessians
is 2n times the cost of computing the Jacobian,
for power series truncated at degree n,
the cost overhead factor of Newton’s method is O(n log(n)).

Relative to a posteriori step size control,
the cost overhead of a priori step size control is O(n log(n)).

Use parallel computers to offset the cost overhead.
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computational results

Available in PHCpack since v2.4.72, released 1 September 2019.
To track a large number of paths, a static workload distribution
message passing implementation ran on a 44-core workstation.

Two benchmarks:
1 1,048,576 paths defined by 20 quadrics, one linear equation,

the katsura-20 benchmark from computational physics.
About 66 solutions have a large condition number of about 107.
HOM4PS-2.0para [Li, Tsai, Parallel Computing 2009]
reported 4 path jumpings in their runs on katsura-20.

2 1,594,297 paths defined by 13 cubic equations, in noon-13,
arising in a model of a neural network.

All runs were done in double precision, no path jumpings occurred.

Homogeneous coordinate formulations are important.
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the 184,756 paths to all cyclic 11-roots

The cyclic 11-roots problem is a sparse polynomial system
in 11 variables with 181,756 isolated solutions;
the mixed volume of the Newton polytopes equals 181,756.

The start system is a system with the same Newton polytopes,
but with randomly generated complex coefficients.

A run with phc on some difficult path shows:
Around t = 0.5, the coordinates take extreme values,
suggesting a diverging path.
But there is no nearby pole at t = 0.5 and phc -u can
complete without the bound involving the Jacobian and Hessians.

These computations are confirmed with the program Padé.jl,
Julia code written by Simon Telen and Marc Van Barel.

work still in progress...
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Newton polytopes, mixed volumes, and homotopies

The Newton polytope of a polynomial is the convex hull of the
exponents of those monomials appearing with nonzero coefficient.
A regular subdivision ∆ of the polytopes defines homotopies,
starting at solutions of systems supported on the faces of ∆.

Theorem (Bernshteı̌n’s theorems, 1975)
Let P be the Newton polytopes of f(x) = 0. Let C∗ = C \ {0}.
An initial form system of f(x) = 0 has faces of P as Newton polytopes.

1 The mixed volume V (P) ≥ #isolated solutions of f(x) = 0.
2 If V (P) > #isolated solutions of f(x) = 0 in C∗n,

then f(x) = 0 has initial form systems with solutions in C∗n.

V (P) is a generically sharp upper bound. For systems with fewer
solutions, faces of Newton polytopes certify diverging paths.
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the location problem

At the end of a solution path, we may have a singular solution.

At a singular point, the matrix of all partial derivatives is not full rank.

The location problem asks to detect the value of the parameter in the
homotopy where a singular point occurs.

How many terms in the Taylor series are needed
to solve the location problem?
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Taylor series of roots of a polynomial homotopy

Consider the monomial homotopy

h(x , t) = x2 − 1 + t = 0,

where x is the variable and t the parameter.

At t = 0, the solutions are x = ±1.
At t = 1, we have the double root x = 0.

In this test problem, starting at t = 0,
we compute 1 as the nearest singularity.
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paths defined by h(x , t) = x2 − 1 + t = 0
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convergence of the coefficient ratios

Proposition (convergence of the coefficient ratios, CASC 2022)
Assume x(t) is a series which satisfies the conditions of the
ratio theorem of Fabry, with a radius of convergence equal to one.
Let cn be the coefficient of tn in the series, then∣∣∣∣1 − cn

cn+1

∣∣∣∣ is O(1/n)

for sufficiently large n.

The good and the bad:

+ It confirms extensive computational experiments: using 8 terms of
series are sufficient to avoid a singularity in the step size control.

− The O(1/n) grows very slowly, e.g. 1/64 ≈ 0.016, 1/256 ≈ 0.004.
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one extra bit of accuracy after each doubling of n
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going past versus going towards a singularity
Going past a singularity (the red dot):

r
R

t0

r

R

t0

Going towards a singularity (the red dot):

r
R

t0 t0
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recentering and scaling the radius of convergence
At the critical distance to the last pole P:

P

t
1

t∗

P

t
1

0

At the right, after recentering the series at t = 0 and scaling,
the distance to the closest singularity equals 1,
as in the monomial homotopies case studies.

Definition (the last pole)
Given a solution path x(t) of a homotopy h(x, t) = 0,
the last pole P is a value for t such that

1 the matrix of all partial derivatives of h(x(P),P) is rank deficient,
2 of all poles, re(P) is closest to the left of 1.
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an example of Ojika, 1987

f(x , y) =
{

x2 + y − 3 = 0
x + 0.125y2 − 1.5 = 0

has a triple root at (1,2). Using a total degree start system with
random γ, the t0 after t∗ was found at t0 = 0.956.

After reconditioning, with order n = 64, the location is estimated at

1.0265192231142901 + 2.9197227799819557E−05 I

and improved with Richardson extrapolation to

0.9999729580138075 + 8.484367218447337E−06 I,

which locates the singularity with an error of 10−6.

Done with sympy 1.4, mpmath 1.1.0, and phcpy 1.1.1 (CASC 2022).
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one fourfold cyclic 9-root

The cyclic 9-roots problem (solved by Faugère in 2001)
has several isolated roots of multiplicity four.

With the plain blackbox solver of PHCpack,
one path was selected that ended at one of the fourfold roots.

The t0 after t∗, the location of the last pole, is t0 = 0.99832.

After reconditioning, with n = 32, the convergence radius is

1.00000000099639 + 4.319265E−09 I

and confirmed in double double precision.

Because of the close proximity to the singularity,
no extrapolation is necessary in this case.
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the Rho Algorithm

Let cn be the nth coefficient of the Taylor series of x(t) =
√

1 − t .

Then f (n) =
cn

cn+1
=

2(n + 1)
2n − 1

.

f (k) converges logarithmically to 1, f (64) has an error of 1.2e-02.
Richardson extrapolation gives an error of 3.8e-08,
improved by repeated Aitken to an error of 2.3e-11.

The Rho Algorithm (Wynn, 1955) needs 4 terms for a correct result.

The Rho Algorithm computes even order convergents of Thiele’s
interpolating continued fraction.
Thiele interpolation recovers f (n) with just 4 points.
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Past the Critical Distance
Just past the critical distance, the last pole P is at −1

2 + I:

P

t
1

0

P

t
1

0

More past the critical distance, the last pole P is at −1 + 2I:

P

t
1

0

P

t
1

0
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running the Rho Algorithm

The Rho Algorithm is applied on the sequence cn/cn+1, k = 0,1, . . .d ,
cn is the nth coefficient of the Taylor series of x(t), and
x(t) =

√
a(1 − t)(P − t), where a is such that x(0) = 1.

The smallest error of the rho table for various P and d values:

P d = 8 d = 16 d = 32
−1/2 + I 5.0e-01 3.5e-01 1.4e-01
−1/2 + 2I 1.7e-01 9.8e-03 2.6e-05
−1 + 4I 2.5e-02 6.9e-05 6.3e-09
−2 + 8I 3.3e-03 5.3e-07 3.5e-11
−4 + 16I 4.1e-04 4.0e-09 2.4e-12

All calculations happened in double precision.
The coefficients cn were computed with tolerance 1.0e-12.
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what about past 1?

The Rho Algorithm works well when the last pole P is sufficiently far.

But what about a pole Q with re(Q) ≥ 1, close to 1?

P

t
1

0 Q

Example: P = −4 + 16I and Q = 1 − I/2.
The Rho Algorithm applied on the ratios of the coefficients of the
series of x(t) =

√
a(1 − t)(P − t)(Q − t) (with a such that x(0) = 1)

gives error 2.4e-02.
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Conclusions and Extrapolations

The application of the ratio theorem of Fabry,
combined with an estimate for the distance to the nearest path,
leads to a robust a priori step size control algorithm,
capable to track millions of solution paths.

The Rho Algorithm to compute the Fabry ratio works well
when applied to problems when there is no other pole near t = 1.

Poles Q with re(Q) ≥ 1 close to 1 cause problems.
Extrapolate then on the roots of the denominator of a [d/2] Padé
approximant for increasing values of d , the degree of the numerator.
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