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Outline

• Polynomial systems arise in science and engineering

— for this talk: mainly mechanism design.

• Numerical homotopy continuation algorithms

are pleasingly parallel.

• Newton with deflation to recondition isolated singularities.
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a 4-bar linkage

Five-Point Path Synthesis

Design a 4-bar linkage = design trajectory of coupler point.

Input: coordinates of points on coupler curve.

Output: lengths of the bars of the linkage.

C.W. Wampler: Isotropic coordinates, circularity and Bezout

numbers: planar kinematics from a new perspective.

Proceedings of the 1996 ASME Design Engineering Technical Conference.

Irvine, CA, Aug 18–22, 1996.

A.J. Sommese and C.W. Wampler: The Numerical Solution of Systems

of Polynomials Arising in Engineering and Science.

World Scientific, 2005.
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a 4-bar linkage

Isotropic Coordinates

• A point (a, b) ∈ R
2 is mapped to z = a + ib, i =

√−1.

• (z, z̄) = (a + ib, a − ib) ∈ C2 are isotropic coordinates.

• Observe z · z̄ = a2 + b2.

• Rotation around (0, 0) through angle θ is multiplication by eiθ.
Multiply by e−iθ to invert the rotation.

• Abbreviate a rotation by Θ = eiθ,
then its inverse Θ−1 = Θ̄, satisfying ΘΘ̄ = 1.
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a 4-bar linkage

The Loop Equations

Let A = (a, ā) and B = (b, b̄) be the fixed base points.

Unknown are (x, x̄) and (y, ȳ), coordinates of the other two points
in the 4-bar linkage.

For given precision points (pj , p̄j), assuming θ0 = 1,
 (pj + xθj + a)(p̄j + x̄θ̄j + ā) = (p0 + x + a)(p̄0 + x̄ + ā)

(pj + yθj + b)(p̄j + ȳθ̄j + b̄) = (p0 + y + b)(p̄0 + ȳ + b̄)

Since the angle θj corresponding to each (pj , p̄j) is unknown,
five precision points are needed to determine the linkage uniquely.

Adding θj θ̄j = 1 to the system leads to 12 equations in 12 unkowns:
(x, x̄), (y, ȳ), and (θj , θ̄j), for j = 1, 2, 3, 4.

page 6 of C



a 4-bar linkage

12

theta[1]*Theta[1]-1;

theta[2]*Theta[2]-1;

theta[3]*Theta[3]-1;

theta[4]*Theta[4]-1;

-.4091256991*x*theta[1]-1.061607555*I*x*theta[1]+1.157260179-.3374636810*X+.1524877812*I*X

-.3374636810*x-.1524877812*I*x-.4091256991*X*Theta[1]+1.061607555*I*X*Theta[1];

.4011300738*x*theta[2]-1.146477955*I*x*theta[2]+1.338182778-.3374636810*X+.1524877812*I*X

-.3374636810*x-.1524877812*I*x+.4011300738*X*Theta[2]+1.146477955*I*X*Theta[2];

.3705985316*x*theta[3]-1.454067014*I*x*theta[3]+2.114519894-.3374636810*X+.1524877812*I*X

-.3374636810*x-.1524877812*I*x+.3705985316*X*Theta[3]+1.454067014*I*X*Theta[3];

.3188425748*x*theta[4]-.850446965*I*x*theta[4]+.6877863684-.3374636810*X+.1524877812*I*X

-.3374636810*x-.1524877812*I*x+.3188425748*X*Theta[4]+.850446965*I*X*Theta[4];

-1.742137552*y*theta[1]-.3932004150*I*y*theta[1]+1.524665181+.9955481716*Y+.8208949212*I*Y

+.9955481716*y-.8208949212*I*y-1.742137552*Y*Theta[1]+.3932004150*I*Y*Theta[1];

-.9318817788*y*theta[2]-.4780708150*I*y*theta[2]-.5680292799+.9955481716*Y+.8208949212*I*Y

+.9955481716*y-.8208949212*I*y-.9318817788*Y*Theta[2]+.4780708150*I*Y*Theta[2];

-.9624133210*y*theta[3]-.7856598740*I*y*theta[3]-.1214837957+.9955481716*Y+.8208949212*I*Y

+.9955481716*y-.8208949212*I*y-.9624133210*Y*Theta[3]+.7856598740*I*Y*Theta[3];

-1.014169278*y*theta[4]-.1820398250*I*y*theta[4]-.6033068118+.9955481716*Y+.8208949212*I*Y

+.9955481716*y-.8208949212*I*y-1.014169278*Y*Theta[4]+.1820398250*I*Y*Theta[4];
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homotopy continuation

Numerical Homotopy Continuation Methods

If we wish to solve f(x) = 0, then we construct a system g(x) = 0
whose solutions are known. Consider the homotopy

H(x, t) := (1 − t)g(x) + tf(x) = 0.

By continuation, we trace the paths starting at the known
solutions of g(x) = 0 to the desired solutions of f(x) = 0,
for t from 0 to 1.

homotopy continuation methods are symbolic-numeric:
homotopy methods treat polynomials as algebraic objects,
continuation methods use polynomials as functions.

geometric interpretation: move from general to special,
solve special, and move solutions from special to general.
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homotopy continuation

Product Deformations

y

1

0.0

1.0

x

1.5

−0.5

−1.0

−1 20−2

−1.5

0.5

y

1

0.0

1.0

x

1.5

−0.5

−1.0

−1 20−2

−1.5

0.5

γ





 x2 − 1 = 0

y2 − 1 = 0︸ ︷︷ ︸
start system


 (1−t) +





 x2 + 4y2 − 4 = 0

2y2 − x = 0︸ ︷︷ ︸
target system


 t, γ ∈ C
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homotopy continuation

The theorem of Bézout

f = (f1, f2, . . . , fn)

di = deg(fi)

total degree D :

D =
n∏

i=1

di

g(x) =




α1x
d1
1 − β1 = 0

α2x
d2
2 − β2 = 0

...

αnxdn
n − βn = 0

start

system

αi, βi ∈ C

random

Theorem: f(x) = 0 has at most D isolated solutions in Cn,

counted with multiplicities.

Sketch of Proof: V = { (f,x) ∈ P(HD) × P(Cn) | f(x) = 0 }
Σ′ = {(f,x) ∈ V | det(Dxf(x)) = 0}, Σ = π1(Σ′), π1 : V → P(HD)
Elimination theory: Σ is variety ⇒ P(HD) − Σ is connected.
Thus h(x, t) = (1 − t)g(x) + tf(x) = 0 avoids Σ, ∀t ∈ [0, 1).
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homotopy continuation

Implicitly defined curves

Consider a homotopy hk(x(t), y(t), t) = 0, k = 1, 2.

By ∂
∂t on homotopy: ∂hk

∂x
∂x
∂t

+ ∂hk

∂y
∂y
∂t

+ ∂hk

∂t
∂t
∂t

= 0, k = 1, 2.

Set ∆x := ∂x
∂t , ∆y := ∂y

∂t , and ∂t
∂t = 1.

Increment t := t + ∆t

Solve

[
∂h1

∂x
∂h1

∂y

∂h2

∂x
∂h2

∂y

] [
∆x

∆y

]
= −

[
∂h1

∂t

∂h2

∂t

]
(Newton)

Update

{
x := x + ∆x

y := y + ∆y

page 4 of H



homotopy continuation

Predictor-Corrector Methods

loop

1. predict

8<
:

tk+1 := tk + ∆t

x(k+1) := x(k) + ∆x

2. correct with Newton

3. if convergence

then enlarge ∆t

continue with k + 1

else reduce ∆t

back up and restart at k

until t = 1.

[t*,x*]

secant  predictor

t

[t1,x1]

0.3

0.1

0.4

0.2

−0.1

0.0

−0.2

0.250.0 1.00.750.5

[t0,  x0]

[t*,x*]

Euler  predictor

[t1,x1]

0.4

0.3

0.2

0.1

0.0

−0.1

−0.2

t

1.00.750.50.250.0
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homotopy continuation

Robustness of Continuation Methods

sure to find all roots at the end of the paths?

• dealing with curve jumping:

1. fix #Newton steps to force quadratic convergence;

2. rerun clustered paths with same discretization of t.

• Robust step control by interval methods, see

R.B. Kearfott and Z. Xing: An interval step control for continuation

methods. SIAM J. Numer. Anal. 31(3): 892–914, 1994.

• Root of multiplicity µ will appear at the end of the paths
as a cluster of µ roots.

Use “endgames”, eventually in multi-precision arithmetic.
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homotopy continuation

Complexity Issues

The Problem: a hierarchy of complexity classes

P : evaluation of a system at a point

NP : find one root of a system

#P : find all roots of a system (intractable!)

Complexity of Homotopies: for bounds on #Newton steps in a
linear homotopy, see

L. Blum, F. Cucker, M. Shub, and S. Smale: Complexity and Real

Computation. Springer 1998.

M. Shub and S. Smale: Complexity of Bezout’s theorem V: Polynomial

Time. Theoretical Computer Science 133(1):141–164, 1994.

On average, we can find an approximate zero in polynomial time.
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homotopy continuation

Solving the Loop Equations

Recall: 12 equations in 12 unknowns.

All equations are quadratic, so the total degree is 212 = 4, 096.

+ Tracking 4,096 takes 25 minutes on a modern computer.

− Of the 4,096 paths, only 36 will converge.

→ 4,060 wasted paths!
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deflation algorithm

Singularities are keeping us in business

numerical analysis: bifurcation points and endgames

Rall (1966); Reddien (1978); Decker-Keller-Kelley (1983);
Griewank-Osborne (1981); Hoy (1989);
Deuflard-Friedler-Kunkel (1987); Kunkel (1989, 1996);
Morgan-Sommese-Wampler (1991); Li-Wang (1993, 1994);
Allgower-Schwetlick (1995); Pönisch-Schnabel-Schwetlick (1999);
Allgower-Böhmer-Hoy-Janovský (1999); Govaerts (2000)

computer algebra: standard bases (SINGULAR)

Mora (1982); Greuel-Pfister (1996); Marinari-Möller-Mora (1993)

numerical polynomial algebra: multiplicity structure

Möller-Stetter (1995); Mourrain (1997);
Stetter-Thallinger (1998); Dayton-Zeng (2005)

deflation: Ojika-Watanabe-Mitsui (1983); Lecerf (2003)
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deflation algorithm

Twelve lines tangent to four spheres

Frank Sottile and Thorsten Theobald: Lines tangents to 2n − 2 spheres in R
n

Trans. Amer. Math. Soc. 354
pages 4815-4829, 2002.

Problem:
Given 4 spheres,
find all lines tangent
to all 4 given spheres.

Observe:
12 solutions in groups of 4.
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deflation algorithm

Twelve lines tangent to four spheres

Frank Sottile and Thorsten Theobald: Lines tangents to 2n − 2 spheres in R
n

Trans. Amer. Math. Soc. 354
pages 4815-4829, 2002.

Problem:
Given 4 spheres,
find all lines tangent
to all 4 given spheres.

Observe:
3 lines of multiplicity 4.

page 2 of D



deflation algorithm

An Input Polynomial System

x0**2 + x1**2 + x2**2 - 1;

x0*x3 + x1*x4 + x2*x5;

x3**2 + x4**2 + x5**2 - 0.25;

x3**2 + x4**2 - 2*x2*x4 + x2**2 + x5**2 + 2*x1*x5 + x1**2 - 0.25;

x3**2 + 1.73205080756888*x2*x3 + 0.75*x2**2 + x4**2 - x2*x4 + 0.25*x2**2

+ x5**2 - 1.73205080756888*x0*x5 + x1*x5

+ 0.75*x0**2 - 0.86602540378444*x0*x1 + 0.25*x1**2 - 0.25;

x3**2 - 1.63299316185545*x1*x3 + 0.57735026918963*x2*x3

+ 0.66666666666667*x1**2 - 0.47140452079103*x1*x2 + 0.08333333333333*x2**2

+ x4**2 + 1.63299316185545*x0*x4 - x2*x4 + 0.66666666666667*x0**2

- 0.81649658092773*x0*x2 + 0.25*x2**2

+ x5**2 - 0.57735026918963*x0*x5 + x1*x5 + 0.08333333333333*x0**2

- 0.28867513459481*x0*x1 + 0.25*x1**2 - 0.25;

Original formulation as polynomial system: Cassiano Durand.

Centers of the spheres at the vertices of a tetrahedron: Thorsten Theobald.

Algebraic numbers sqrt(3), sqrt(6), etc. approximated by double floats.

The system has 6 isolated solutions, each of multiplicity 4.
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deflation algorithm

Solutions at the End of Continuation

Two solutions in a cluster: (real and imaginary parts)

solution 1 :

x0 : -7.07106803165780E-01 3.77452918725401E-08

x1 : -4.08248430737360E-01 -1.83624917064964E-07

x2 : 5.77350143082334E-01 -8.36140714113780E-08

x3 : -2.50000000000000E-01 -1.57896818458518E-16

x4 : 4.33012701892221E-01 -9.11600174682333E-17

x5 : 9.56878363411174E-08 1.54062878745083E-07

solution 2 :

x0 : -7.07106794356709E-01 -1.29682370414209E-07

x1 : -4.08248217029256E-01 1.11010906008961E-07

x2 : 5.77350304985648E-01 -8.03312536501087E-08

x3 : -2.50000000000001E-01 -1.74789416181029E-16

x4 : 4.33012701892220E-01 -1.00914936462574E-16

x5 : -6.07788020445124E-08 -1.39412292964849E-07

this is the input to our deflation algorithm
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deflation algorithm

Newton’s Method for Overdetermined Systems

Singular Value Decomposition of N -by-n Jacobian matrix Jf :

Jf = UΣV T , U and V are orthogonal: UT U = IN , V T V = In,

and singular values σ1 ≥ σ2 ≥ · · · ≥ σn as the only nonzero
elements on the diagonal of the N -by-n matrix Σ (N > n).

The condition number cond(Jf (z)) = σ1
σn

.

Rank(Jf (z)) = R ⇐⇒ Σ = diag(σ1, σ2, . . . , σR, 0, . . . , 0).

At a multiple root z0: Rank(Jf (z0)) = R < n.

Close to z0, z ≈ z0 : σR+1 ≈ 0, or |σR+1| < ε, ε is tolerance.

Moore-Penrose inverse: J+
f = V Σ+UT , with R = Rank(Jf ),

and Σ+ = diag( 1
σ1

, 1
σ2

, . . . , 1
σR

, 0, . . . , 0).

Then ∆z = −Jf (z)+f(z) is the least squares solution.

Dedieu-Shub (1999); Li-Zeng (2005)
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deflation algorithm

Deflation Operator Dfl reduces to Corank One

Consider f(x) = 0, N equations in n unknowns, N ≥ n.

Suppose Rank(A(z0)) = R < n for z0 an isolated zero of f(x) = 0.

Choose h ∈ C
R+1 and B ∈ C

n×(R+1) at random.

Introduce R + 1 new multiplier variables λ = (λ1, λ2, . . . , λR+1).

Dfl(f)(x, λ) :=




f(x) = 0

A(x)Bλ = 0

hλ = 1

Rank(A(x)) = R

⇓
corank(A(x)B) = 1

Compared to the deflation of Ojika, Watanabe, and Mitsui:
(1) we do not compute a maximal minor of the Jacobian matrix;
(2) we only add new equations, we never replace equations.
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deflation algorithm

Newton’s Method with Deflation�
�

�
�

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.
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deflation algorithm

Newton’s Method with Deflation�
�

�
�

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

�
[A+, R] := SVD(A(xk), ε);

xk+1 := xk − A+f(xk);
Gauss-Newton
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deflation algorithm

Newton’s Method with Deflation�
�

�
�

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

�
[A+, R] := SVD(A(xk), ε);

xk+1 := xk − A+f(xk);
Gauss-Newton

��������

�������

�������

�������R = #columns(A)?
Yes�
�
�
�
�Output: f ;xk+1.
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deflation algorithm

Newton’s Method with Deflation�
�

�
�

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

�
[A+, R] := SVD(A(xk), ε);

xk+1 := xk − A+f(xk);
Gauss-Newton

��������

�������

�������

�������R = #columns(A)?
Yes�
�
�
�
�Output: f ;xk+1.

�No

f := Dfl(f)(x, λ) =

8<
:

f(x) = 0

G(x, λ) = 0
; Deflation Step

bλ := LeastSquares(G(xk+1, λ));

k := k + 1; xk := (xk, bλ);

�
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deflation algorithm

12 Lines Tangent to 4 Spheres revisited

Continuation methods find 24 solutions, clustered in groups of 4.

The rank at all solutions is 4, corank is 2.

One deflation suffices to restore quadratic convergence.

An average condition number drops from 3.4E+8 to 1.1E+2.

We can compute the solutions

with accuracy close to machine precision,

on a system with approximate coefficients,

given with double float precision.
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deflation algorithm

A Bound on the Number of Deflations

Theorem (Anton Leykin, JV, Ailing Zhao):
The number of deflations needed to restore the

quadratic convergence of Newton’s method converging

to an isolated solution is strictly less than the

multiplicity.

Duality Analysis of Barry H. Dayton and Zhonggang Zeng:

(1) tighter bound on number of deflations; and

(2) special case algorithms, for corank = 1.

(Proceedings of ISSAC 2005)
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deflation algorithm

A Hierarchy of Structures

Coefficient-Parameter

Polyhedral Methods
polynomial

products

Linear Products

Multihomogeneous

Total Degree

S

S

S

S

S

S
easier
start

system

�

more efficient
(fewer paths)

�	A

Below line A: solving start systems is done automatically.

Above line A: special ad-hoc methods must be designed.
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parallel robots

Assembly of Stewart-Gough Platforms

end plate, the platform

is connected by legs to

a stationary base

Forward Displacement Problem:
Given: position of base and leg lengths.
Wanted: position of end plate.
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parallel robots

The Equations for the Platform Problem

workspace R
3 × SO(3): position and orientation

SO(3) = { A ∈ C
3×3 | AHA = I, det(A) = 1 }

more efficient to use Study (or soma) coordinates:
[e : g] = [e0 : e1 : e2 : e3 : g0 : g1 : g2 : g3] ∈ P

7 quaternions on
the Study quadric: f0(e, g) = e0g0 + e1g2 + e2g2 + e3g3 = 0,
excluding those e for which ee′ = 0, e′ = (e0,−e1,−e2,−e3)

given leg lengths Li, find [e : g] leads to

fi(e, g) = gg′+(bb′i+aia
′
i−L2

i )ee
′+(gb′ie

′+ebig
′)−(ge′a′

i+aieg
′)

− (ebie
′a′

i + aieb
′
ie

′) = 0, i = 1, 2, . . . 6

⇒ solve f = (f0, f1, . . . , f6), 7 quadrics in [e : g] ∈ P7

expecting 27 = 128 solutions...
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parallel robots

Literature on Stewart-Gough platforms

M. Raghavan: The Stewart platform of general geometry has 40

configurations. ASME J. Mech. Design 115:277–282, 1993.

B. Mourrain: The 40 generic positions of a parallel robot. In

Proceedings of the International Symposium on Symbolic and Algebraic

Computation, ed. by M. Bronstein, pages 173–182, ACM 1993.

F. Ronga and T. Vust: Stewart platforms without computer? In Real

Analytic and Algebraic Geometry, Proceedings of the International

Conference, (Trento, 1992), pages 196–212, Walter de Gruyter 1995.

M.L. Husty: An algorithm for solving the direct kinematics of general

Stewart-Gough Platforms. Mech. Mach. Theory, 31(4):365–380, 1996.

C.W. Wampler: Forward displacement analysis of general

six-in-parallel SPS (Stewart) platform manipulators using soma

coordinates. Mech. Mach. Theory 31(3): 331–337, 1996.

P. Dietmaier: The Stewart-Gough platform of general geometry can

have 40 real postures. In Advances in Robot Kinematics: Analysis and

Control, ed. by J. Lenarcic and M.L. Husty, pages 7–16. Kluwer 1998.
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parallel robots

Coefficient-Parameter Homotopies

Solve system f(x,q) = 0 with natural parameters q ∈ C
m.

1. solve system once for a generic choice q0 of the parameters;

2. to move from generic to specific instance q1, use homotopy

f(x,q(t)) = f(x, (1 − t)q0 + tq1) = 0, for t from 0 to 1.

At t = 0, for q = q0, we have the maximal number of isolated

regular solutions. Singularities can occur only at t = 1.

A.P. Morgan and A.J. Sommese: Coefficient-parameter polynomial

continuation. Appl. Math. Comput., 29(2):123–160, 1989.

A.J. Sommese and C.W. Wampler: The Numerical Solution of Systems

of Polynomials Arising in Engineering and Science.

World Scientific, 2005.
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parallel robots

A family of Stewart-Gough platforms

6-6, 40 solutions 4-6, 32 solutions

4-4a, 16 solutions

4-4b, 24 solutions

3-3, 16 solutions
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multihomogenization

Multihomogeneous version of Bézout’s theorem

Consider the eigenvalue problem Ax = λx, A ∈ C
n×n.

Add one general hyperplane
n∑

i=1

cixi + c0 = 0 for unique x.

Bézout’s theorem: D = 2n ↔ at most n solutions

Embed in multi-projective space: P × Pn, separating λ from x.

{λ} {x1, x2}
1 1

1 1

0 1

degree table

⇐⇒

{λ} {x1, x2}
λ + γ1 α0 + α1x1 + α2x2

λ + γ2 β0 + β1x1 + β2x2

1 c0 + c1x1 + c2x2

linear-product start system

The root count B = 1 · 1 · 1 + 1 · 1 · 1 + 0 · 1 · 1 is a permanent.
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multihomogenization

How to find the best partition?

A multi-homogeneous Bézout number depends on the choice of a
partition of the set of unknowns. So, how to choose?

• Knowledge of the application, e.g.: eigenvalue problem.

• Enumerate all partitions and retain the partition with the
smallest Bézout number.

#unknowns 1 2 3 4 5 6 7 8 9 · · ·
#partitions 1 2 5 15 52 203 877 4140 21147 · · ·
C.W. Wampler: Bezout number calculations for multi-homogeneous

polynomial systems. Appl. Math. Comput. 51(2–3):143–157, 1992.

• Heuristics based on structures of the monomials
are effective in most of the practical cases.
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multihomogenization

linear-product start systems

f(x) =

8>><
>>:

x1x2
2 + x1x3

3 − cx1 + 1 = 0 c ∈ C

x2x2
1 + x2x2

3 − cx2 + 1 = 0

x3x2
1 + x3x2

2 − cx3 + 1 = 0 D = 27

{x1} {x2, x3} {x2, x3} symmetric

{x2} {x1, x3} {x1, x3} supporting B = 21

{x3} {x1, x2} {x1, x2} set structure

Choose 7 random complex numbers c1, c2, . . . , c7 and create

g(x) =

8>><
>>:

(x1 + c1)(c2x2 + c3x3 + c4)(c5x2 + c6x3 + c7) = 0

(x2 + c1)(c2x1 + c3x3 + c4)(c5x1 + c6x3 + c7) = 0

(x3 + c1)(c2x1 + c3x2 + c4)(c5x1 + c6x2 + c7) = 0

8 generating solutions
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multihomogenization

Solving the Loop Equations again

• Partition the unknowns in 6 groups:
{{θ1, θ̄1}, {θ2, θ̄2}, {θ3, θ̄3}, {θ4, θ̄4}, {x, x̄}, {y, ȳ}}.

• The 6-homogeneous Bézout number is 96

� 4,096 (= total degree).

• Solving takes only 16 seconds � 25 minutes,

but still 60 wasted paths.

page 4 of M



polyhedral homotopies

Polyhedral Homotopies

D.N. Bernshtěın. Functional Anal. Appl. 1975.

B. Huber and B. Sturmfels. Math. Comp. 1995.

T.Y. Li. Handbook of Numerical Analysis. Volume XI. 2003.

T. Gao, T.Y. Li, and M. Wu. Algorithm 846: MixedVol:
A software package for mixed volume computation.
ACM Trans. Math. Softw. 31(4):555–560, 2005.

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa,
and T. Mizutani. PHoM – a polyhedral homotopy
continuation method for polynomial systems.
Computing 73(4):55–77, 2004.

G. Jeronimo, G. Matera, P. Solernó, and A. Waissbein.
Deformation techniques for sparse systems.
arXiv:math.CA/0608714 v1 29 Aug 2006.
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polyhedral homotopies

Geometric Root Counting

fi(x) =
X
a∈Ai

ciax
a

cia ∈ C∗ = C \ {0}
f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

L(f) root count in (C∗)n desired properties

L(f) = L(f2, f1, . . . , fn) invariant under permutations

L(f) = L(f1xa, . . . , fn) shift invariant

L(f) ≤ L(f1 + xa, . . . , fn) monotone increasing

L(f) = L(f1(xUa), . . . , fn(xUa)) unimodular invariant

L(f11f12, . . . , fn) root count of product

= L(f11, . . . , fn) + L(f12, . . . , fn) is sum of root counts
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polyhedral homotopies

Geometric Root Counting

fi(x) =
X
a∈Ai

ciax
a

cia ∈ C∗ = C \ {0}
f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

properties of L(f) V (P) mixed volume

invariant under permutations V (P2, P1, . . . , Pn) = V (P)

shift invariant V (P1 + a, . . . , Pn) = V (P)

monotone increasing V (conv(P1 + a), . . . , Pn) ≥ V (P)

unimodular invariant V (UP1, . . . , UPn) = V (P)

root count of product V (P11 + P12, . . . , Pn)

is sum of root counts = V (P11, . . . , Pn) + V (P12, . . . , Pn)
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polyhedral homotopies

Geometric Root Counting

fi(x) =
X
a∈Ai

ciax
a

cia ∈ C∗ = C \ {0}
f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

L(f) root count in (C∗)n V (P) mixed volume

L(f) = L(f2, f1, . . . , fn) V (P2, P1, . . . , Pn) = V (P)

L(f) = L(f1xa, . . . , fn) V (P1 + a, . . . , Pn) = V (P)

L(f) ≤ L(f1 + xa, . . . , fn) V (conv(P1 + a), . . . , Pn) ≥ V (P)

L(f) = L(f1(xUa), . . . , fn(xUa)) V (UP1, . . . , UPn) = V (P)

L(f11f12, . . . , fn) V (P11 + P12, . . . , Pn)

= L(f11, . . . , fn) + L(f12, . . . , fn) = V (P11, . . . , Pn) + V (P12, . . . , Pn)

exploit sparsity L(f) = V (P) 1st theorem of Bernshtěın
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polyhedral homotopies

3 stages to solve a polynomial system f(x) = 0

1. Compute the mixed volume (aka the BKK bound)
of the Newton polytopes spanned by the supports A of f

via a regular mixed-cell configuration ∆ω.

2. Given ∆ω, solve a generic system g(x) = 0, using polyhedral
homotopies. Every cell C ∈ ∆ω defines one homotopy

hC(x, s) =
∑
a∈C

caxa +
∑

a∈A\C

caxasνa , νa > 0,

tracking as many paths as the mixed volume of the cell C,
as s goes from 0 to 1.

3. Use (1 − t)g(x) + tf(x) = 0 to solve f(x) = 0.

Stages 2 and 3 are computationally most intensive (1 � 2 < 3).
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polyhedral homotopies

Solving the Loop Equations once more

• The mixed volume equals 36 and is an exact root count.

584 milliseconds to compute the mixed volume

1 second 448 milliseconds to solve a random start system

1 second 800 milliseconds to track 36 paths to target system

• total time: 3 seconds and 868 milliseconds

better than the 16 seconds with multihomogenization

page 4 of P



polyhedral homotopies

A Static Distribution of the Workload

joint with Yan Zhuang

manager worker 1 worker 2 worker 3

Vol(cell 1) = 5

Vol(cell 2) = 4

Vol(cell 3) = 4

Vol(cell 4) = 6

Vol(cell 5) = 7

Vol(cell 6) = 3

Vol(cell 7) = 4

Vol(cell 8) = 8

total #paths : 41

#paths(cell 1) : 5

#paths(cell 2) : 4

#paths(cell 3) : 4

#paths(cell 4) : 1

#paths : 14

#paths(cell 4) : 5

#paths(cell 5) : 7

#paths(cell 6) : 2

#paths : 14

#paths(cell 6) : 1

#paths(cell 7) : 4

#paths(cell 8) : 8

#paths : 13

Since polyhedral homotopies solve a generic system g(x) = 0,
we expect every path to take the same amount of work...

page 5 of P



polyhedral homotopies

An academic Benchmark: cyclic n-roots

The system

f(x) =




fi =
n=1∑
j=0

i∏
k=1

x(k+j)mod n = 0, i = 1, 2, . . . , n − 1

fn = x0x1x2 · · ·xn−1 − 1 = 0

appeared in

G. Björck: Functions of modulus one on Zp whose Fourier

transforms have constant modulus In Proceedings of the Alfred

Haar Memorial Conference, Budapest, pages 193–197, 1985.

very sparse, well suited for polyhedral methods
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polyhedral homotopies

Results on the cyclic n-roots problem

Problem #Paths CPU Time

cyclic 5-roots 70 0.13m

cyclic 6-roots 156 0.19m

cyclic 7-roots 924 0.30m

cyclic 8-roots 2,560 0.78m

cyclic 9-roots 11,016 3.64m

cyclic 10-roots 35,940 21.33m

cyclic 11-roots 184,756 2h 39m

cyclic 12-roots 500,352 24h 36m

Wall time for start systems to solve the cyclic n-roots problems,
using 13 workers, with static load distribution.
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polyhedral homotopies

Dynamic versus Static Workload Distribution

Static versus Dynamic on our cluster Dynamic on argo

#workers Static Speedup Dynamic Speedup Dynamic Speedup

1 50.7021 – 53.0707 – 29.2389 –

2 24.5172 2.1 25.3852 2.1 15.5455 1.9

3 18.3850 2.8 17.6367 3.0 10.8063 2.7

4 14.6994 3.4 12.4157 4.2 7.9660 3.7

5 11.6913 4.3 10.3054 5.1 6.2054 4.7

6 10.3779 4.9 9.3411 5.7 5.0996 5.7

7 9.6877 5.2 8.4180 6.3 4.2603 6.9

8 7.8157 6.5 7.4337 7.1 3.8528 7.6

9 7.5133 6.8 6.8029 7.8 3.6010 8.1

10 6.9154 7.3 5.7883 9.2 3.2075 9.1

11 6.5668 7.7 5.3014 10.0 2.8427 10.3

12 6.4407 7.9 4.8232 11.0 2.5873 11.3

13 5.1462 9.8 4.6894 11.3 2.3224 12.6

Wall time in seconds to solve a start system for the cyclic 7-roots problem.
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serial chains

Design of Serial Chains I

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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serial chains

Design of Serial Chains II

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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serial chains

Design of Serial Chains III

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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serial chains

For more about these problems:

H.-J. Su and J.M. McCarthy: Kinematic synthesis of RPS
serial chains. In the Proceedings of the ASME Design
Engineering Technical Conferences (CDROM), Chicago, IL,
Sep 2-6, 2003.

H.-J. Su, C.W. Wampler, and J.M. McCarthy: Geometric
design of cylindric PRS serial chains.
ASME Journal of Mechanical Design 126(2):269–277, 2004.

H.-J. Su, J.M. McCarthy, and L.T. Watson: Generalized linear
product homotopy algorithms and the computation of
reachable surfaces. ASME Journal of Information and
Computer Sciences in Engineering 4(3):226–234, 2004.

page 4 of E



serial chains

Results on Mechanical Design Problems

joint with Yan Zhuang

Bounds on #Solutions Wall Time

Surface Bézout linear-product Mixvol our cluster on argo

elliptic cylinder 2,097,152 247,968 125,888 11h 33m 6h 12m

circular torus 2,097,152 868,352 474,112 7h 17m 4h 3m

general torus 4,194,304 448,702 226,512 14h 15m 6h 36m

Wall time for mechanism design problems on our cluster and argo.

• Compared to the linear-product bound, polyhedral homotopies
cut the #paths about in half.

• The second example is easier (despite the larger #paths)
because of increased sparsity, and thus lower evaluation cost.
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