Sweeping for singular solutions of polynomial systems with parameters

Kathy Piret Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~kathywang http://www.math.uic.edu/~jan kathywang@math.uic.edu jan@math.uic.edu

ACA 2009 Session on Algorithms for Parametric Systems and their Applications. ÉTS, Montréal, Canada, 25-28 June 2009.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction and Problem Statement

- solving polynomial systems with homotopy continuation
- reconditioning singularities with deflation
- global and local problems
- detection and location of quadratic turning points

2 Detection of Singularities

- a neural network model with straight solution paths
- Puiseux series and the determinant criterion
- parabolic interpolation of determinants

Applications

• three polynomial systems from the literature

イモトイモト

Solving Polynomial Systems

numerical algebraic geometry: numerical analysis and algebraic geometry

Polynomial systems are nonlinear systems with algebraic structure. This algebraic structure enables to compute

- not only all isolated solutions,
- but also a numerical irreducible decomposition

 \rightarrow degrees and dimensions of all irreducible components.

Two key references:

- Tien-Yien Li. Numerical solution of polynomial systems by homotopy continuation methods. In Volume XI of Handbook of Numerical Analysis, pages 209–304, 2003.
- Andrew J. Sommese and Charles W. Wampler. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, 2005.

イロト 不得 トイヨト イヨト 二日

Homotopy Continuation Methods

natural and artificial parameter homotopies

A **homotopy** h is a family of systems, depending on a parameter. With **continuation** methods we track solution paths defined by h. We distinguish between two types of parameters:

(1) a natural parameter λ , for example:

$$h(\lambda, \mathbf{x}) = \lambda^2 + \mathbf{x}^2 - 1 = 0.$$

As λ varies we track the unit circle: $(\lambda, \mathbf{x}(\lambda)) \in h^{-1}(0)$. 2 an artificial parameter t, for example:

$$h(t,\lambda,x) = \begin{cases} \lambda^2 + x^2 - 1 = 0\\ (\lambda-2)t + (\lambda+2)(1-t) = 0. \end{cases}$$

As t moves from 0 to 1, λ goes from -2 to +2and we **sweep** points $(\lambda(t), x(\lambda(t)))$ on the unit circle.

Reconditioning Singularities via Deflation

restoring the quadratic convergence of Newton's method

A solution **z** to $f(\mathbf{x}) = \mathbf{0}$, $f = (f_1, f_2, ..., f_N)$, $\mathbf{x} = (x_1, x_2, ..., x_n)$, N > n, is singular if the Jacobian matrix $A(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}$ has rank R < n at **z**.

Choose $\mathbf{c} \in \mathbb{C}^{R+1}$ and $\mathbf{B} \in \mathbb{C}^{n \times (R+1)}$ at random. Introduce R + 1 new multiplier variables $\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_{R+1})$. Apply the Gauss-Newton method to

$$\begin{cases} f(\mathbf{x}) = \mathbf{0} & \operatorname{Rank}(A(\mathbf{x})) = \mathbf{R} \\ A(\mathbf{x})\mathbf{B}\boldsymbol{\mu} = \mathbf{0} & \qquad \Downarrow \\ \mathbf{c}\boldsymbol{\mu} = \mathbf{1} & \operatorname{coRank}(A(\mathbf{x})\mathbf{B}) = \mathbf{1} \end{cases}$$

Recurse if necessary, # deflations < multiplicity. An efficient implementation uses algorithmic differentiation.

イロト 不得 トイヨト イヨト 二日

Problems and Applications

some hard motiviating questions

General problem statement:

Given a polynomial system $f(\lambda, \mathbf{x}) = 0$, $\lambda \in \mathbb{C}^m$, $\mathbf{x} \in \mathbb{C}^n$, find values λ for which solutions \mathbf{x} are singular.

Two motivating questions:

- from real algebraic geometry:
 → can all complex solutions turn real?
- from numerical algebraic geometry: → what are the real irreducible solution components?

< □ > < 同 > < 三 > < 三 >

Complexity Issues

of local and global solutions

Solving the global problem

Given a polynomial system $f(\lambda, \mathbf{x}) = 0$, $\lambda \in \mathbb{C}^m$, $\mathbf{x} \in \mathbb{C}^n$, find values λ for which solutions \mathbf{x} are singular.

involves a description of **the discriminant variety** and the solution of more difficult polynomial systems.

Instead we consider a **local** problem, for *one* parameter λ :

Given a polynomial system $f(\lambda, \mathbf{x}) = 0$, $\lambda \in \mathbb{C}^m$, $\mathbf{x} \in \mathbb{C}^n$, a solution \mathbf{z} for $\lambda = \lambda_0$ and target value λ_1 ,

find either the solution **z** for $\lambda = \lambda_1$ if no singularities for all $\lambda(t) = (1 - t)\lambda_0 + t\lambda_1$, or the first $(t, \lambda(t), \mathbf{x}(t))$ for which $\mathbf{z} = (\lambda(t), \mathbf{x}(t))$ is singular.

イロト 不得 トイヨト イヨト 二日

References

numerical methods

- W.J.F. Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, 2000.
- Z. Mei. Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, 2000.
- P. Kunkel. A tree-based analysis of a family of augmented systems for the computation of singular points. *IMA J. Numer. Anal.* 1996.
- T.Y. Li and Z. Zeng. Homotopy continuation algorithm for the real nonsymmetric eigenproblem: Further development and implementation. *SIAM J. Sci. Comput.* 1999.
- S A. Leykin, J. Verschelde, and A. Zhao. Newton's method with deflation for isolated singularities of polynomial systems. *Theoretical CS* 2006.
- Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all real points of a complex curve. *Contemporary Mathematics* 448: 183–206, 2007.

3

イロト 不得 トイヨト イヨト

Quadratic Turning Points

most common type of singularity

Detection: monitor orientation of tangent vectors. Two consecutive tangent vectors $\mathbf{v}(t_1)$ and $\mathbf{v}(t_2)$. Criterion: $\langle \mathbf{v}(t_1), \mathbf{v}(t_2) \rangle < 0 \Rightarrow \mathbf{v}(t) \perp t - \text{axis for } t \in [t_1, t_2]$. Tangents are simple byproduct of predictor-corrector path tracker.

Solution: shooting method for step size. Consider $\mathbf{x}(t) = \mathbf{x}(t_1) + h \mathbf{v}(t_1)$, find *h* and *t*: $\mathbf{v}(t) \perp t$ -axis. Overshot turning point for $h = h_2$, at $\mathbf{x}(t_2)$ path has turned back.

イロト 不得 トイヨト イヨト 二日

Sweeping a Circle

Kathy Piret and Jan Verschelde (UIC)

э

Difficulties to Extend Approach

for any type of isolated singularity along a path

Detecting and locating quadratic turning points goes well.

Extending to any type of singularity has two difficulties:

- detection: flip of tangent orientation no longer suffices
 → the path tracker glides over the singularity
- Iocation: higher order singularities may have corank > 1
 → the path tracker fails to converge

Solutions for these difficulties:

- use a Jacobian criterion for detection, and
- algebraic higher order predictor for location.

Common tool: Puiseux series expansion at a point along the path.

(日)

Neural Network Model

a family of polynomial systems for any dimension n

V.W. Noonburg. A neural network modeled by an adaptive Lotka-Volterra system. *SIAM J. Appl. Math.* 1989.

• Applying a sweep to the polynomial systems:

$$f(x,\lambda) = \begin{cases} x_1 x_2^2 + x_1 x_3^2 - \lambda x_1 + 1 = 0\\ x_2 x_1^2 + x_2 x_3^2 - \lambda x_2 + 1 = 0\\ x_3 x_1^2 + x_3 x_2^2 - \lambda x_3 + 1 = 0\\ (\lambda + 1)(1 - t) + (\lambda - 1)t = 0 \end{cases}$$

- As t goes from 0 to 1, λ goes from -1 to +1.
- The tangent does not flip at the origin.
 The path tracker does not detect the quadruple point for λ = 0.

The Plot of Solution Paths for Neural Networks

the solution paths are really straight

Kathy Piret and Jan Verschelde (UIC)

ACA 2009, 25-28 June 13 / 29

Jumping Over Singularities

in case of jumping over a bifurcation point [Z. Mei]

The shaded blue part is the region where Newton's method converges. On straight curves, the path tracker will never cut back its step size.

- TE

Puiseux or Fractional Power Series

expanding an algebraic curve at a point

The homotopy $h(\mathbf{x}, t) = \mathbf{0}$ defines solution paths $\mathbf{x}(t)$: $h(\mathbf{x}(t), t) \equiv \mathbf{0}$.

Because $\mathbf{x}(t)$ is an algebraic curve, at any point t_* the corresponding solution $\mathbf{x}(t_*) = \mathbf{z} = (z_1, z_2, \dots, z_n)$ admits the expansion:

$$\begin{cases} x_k(s) = z_k s^{v_k} (1 + O(s)) & k = 1, 2, \dots, n, v_k \in \mathbb{Z} \\ s^{\omega} = t - t_* & \text{as } t \to t_*, s \to 0 \end{cases}$$

Special case: $t_* = 0$: $s^{\omega} = t$ or $s = t^{1/\omega}$ and $x_k \to z_k t^{v_k/\omega}$ as $t \to 0$.

The winding number ω determines how hard the path curves.

Determinant criterion for singularity along path $\mathbf{x}(t)$:

singularity at
$$t_* \Leftrightarrow \det(A(\mathbf{x}(t_*))) = 0$$
.

Via Puiseux series, determinant of Jacobian matrix is function of t.

monitor concavity of determinant as function of t

monitor concavity of determinant as function of t

monitor concavity of determinant as function of t

Kathy Piret and Jan Verschelde (UIC)

18/29

monitor concavity of determinant as function of t

Kathy Piret and Jan Verschelde (UIC)

Detection Algorithm Specification

Input:
$$h(\mathbf{x}, t) = \mathbf{0};$$

 $(t_1, t_2, t_3), t_1 < t_2 < t_3;$
 $(\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3): h(\mathbf{z}_i, t_i) = \mathbf{0}, i = 1, 2, 3;$
 $(d_1, d_2, d_3): d_i = \det(\partial_{\mathbf{x}} h(\mathbf{z}_i, t_i)), i = 1, 2, 3;$
 $\delta > 0;$
 $\epsilon > 0.$

a homotopy consecutive samples with solutions and determinants tolerance on $t_3 - t_1$ tolerance on det()

Output:
$$(t^*, \mathbf{z}^*, d^*)$$
, $h(\mathbf{z}^*, t^*) = \mathbf{0}$;
 $d^* = \det(\partial_{\mathbf{x}} h(\mathbf{z}^*, t^*))$, $|d^*| < \epsilon$;
or \emptyset , updated (t_i, \mathbf{z}_i, d_i) , $i = 1, 2, 3$.

a solution that is singular no singular solution

э

Detection Algorithm Implementation

while
$$(|d_1| > |d_2| < |d_3|)$$
 and $(t_3 - t_1 > \delta)$ do
 $t^* := \min \mathcal{P}((t_1, t_2, t_3), (d_1, d_2, d_3));$
 $(z^*, d^*) := \operatorname{Newton}(h, t^*, \mathbf{z}_2);$
if $|d^*| < \epsilon$ then
return $(t^*, \mathbf{z}^*, d^*);$
else if $|d^*| \ge |d_2|$ then
return $\emptyset;$
else
if $t^* < t_2$
then $(t_3, \mathbf{z}_3, d_3) := (t_2, \mathbf{z}_2, d_2);$
else $(t_1, \mathbf{z}_1, d_1) := (t_2, \mathbf{z}_2, d_2);$
end if;
 $(t_2, \mathbf{z}_2, d_2) := (t^*, \mathbf{z}^*, d^*);$
end while.

loop invariants parabolic minimum correct solution first stop test found singularity second stop test no singularity found continue loop adjust t_1 , t_2 , t_3 t_2 becomes right end t_2 becomes left end

d₂ remains minimum

4 A N

★ ∃ > < ∃ >

Numerical Stability

For determinant values d_1 , d_2 , and d_3 , respectively at consecutive t_1 , t_2 , and t_3 , $t^* := \min \mathcal{P}((t_1, t_2, t_3), (d_1, d_2, d_3))$ is subject to roundoff error. t^* is computed via

$$T = \frac{t_1^2(d_3 - d_2) + t_2^2(d_1 - d_3) + t_3^2(d_2 - d_1)}{2d_1(t_2 - t_3) + 2d_2(t_3 - t_1) + 2d_3(t_1 - t_2)}.$$

We compute \overline{T} , replacing in $T d_1$, d_2 , and d_3 respectively by $d_1(1 + \epsilon_1)$, $d_2(1 + \epsilon_2)$, and $d_3(1 + \epsilon_3)$ for errors ϵ_1 , ϵ_2 , and ϵ_3 .

$$\frac{\widetilde{T}-T}{T}=\frac{2\epsilon_1d_1t_{23}+2\epsilon_2d_2t_{13}+2\epsilon_3d_3t_{12}}{P}.$$

with t_{23} , t_{13} , and t_{12} constants of magnitude $> \delta$ and $P = t_1^2(d_3 - d_2) + t_2^2(d_1 - d_3) + t_3^2(d_2 - d_1)$. \Rightarrow large relative errors only if $d_1 \approx d_2 \approx d_3$.

(日)

Numerical Conditioning

Worst case: straight path almost touches ellipses.

$$h(x,\lambda,t) = \begin{cases} (x-1-\epsilon)\left(\frac{\lambda^2}{4}+x^2-1\right) \\ \left(\frac{1}{4}(\lambda+1)^2+\frac{4}{9}(x+1/2)^2-1\right) &= 0 \\ (1-t)(\lambda+2)+t(\lambda-2) &= 0 \end{cases} \quad t \in [0,1].$$

Plots for $\epsilon = 0.05$:

Polynomial Systems

from the literature

- Molecular Configurations:
 - Emiris and Mourrain. Computer algebra methods for studying and computing molecular conformations. Algorithmica 1999.
- 2 Neural Networks:
 - V.W. Noonburg. A neural network modeled by an adaptive Lotka-Volterra system. SIAM J. Appl. Math. 1989.
- Symmetrical Stewart-Gough platforms:
 - Yu Wang and Yi Wang. Configuration Bifurcations Analysis of Six Degree-of-Freedom Symmetrical Stewart Parallel Mechanism. Journal of Mechanical Design 2005.

Polynomial Systems

the number of solutions in C^n for generic choices of parameters

Polynomial Systems	n	#Solutions
Molecular Configurations	3	16
Neural Networks	3	21
Neural Networks	4	73
Neural Networks	5	233
Neural Networks	10	59049
Neural Networks	15	14,348,907
Symmetrical Stewart-Gough Platforms	9	28 (real)

Table: Polynomial Systems which have higher-order multiple points

(3)

4 A N

Molecular Configurations

applying the sweep homotopy algorithm to this system

- The system is small enough to handle with resultant/symbolic methods or global methods.
- Applying a sweep to molecular configurations:

$$f(x,\lambda) = \begin{cases} \frac{1}{2}(x_2^2 + 4x_2x_3 + x_3^2) + \lambda(x_2^2x_3^2 - 1) = 0\\ \frac{1}{2}(x_3^2 + 4x_3x_1 + x_1^2) + \lambda(x_3^2x_1^2 - 1) = 0\\ \frac{1}{2}(x_1^2 + 4x_1x_2 + x_2^2) + \lambda(x_1^2x_2^2 - 1) = 0\\ (\lambda - 1)(1 - t) + (\lambda + 1)t = 0. \end{cases}$$

- The tangent flips at the higher-order turning point at the origin.
- For λ = ±0.866025403780023 on symmetrical curves of degree 6 and one of the eigenvalues of the Jacobian matrix changes signs.

3

Symmetrical Stewart-Gough platforms

nine quadratic polynomial equations

$$f(x, L_1) = \begin{cases} f_i = (x_i - x_{i0})^2 + (y_i - y_{i0})^2 + z_i^2 - L_i^2, i = 1, 2, \dots, 6\\ f_7 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 - 2R_1^2(1 - \beta))\\ f_8 = (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 - R_1^2\\ f_9 = (x_2 - x_0)^2 + (y_2 - y_0)^2 + (z_2 - z_0)^2 - R_1^2 \end{cases}$$

where

$$\begin{cases} x_i = w_1 x_0 + w_2^{m_1} w_3^{m_2} x_1 + w_2^{m_2} w_3^{m_1} x_2 \\ y_i = w_1 y_0 + w_2^{m_1} w_3^{m_2} y_1 + w_2^{m_2} w_3^{m_1} y_2 \\ z_i = w_1 z_0 + w_2^{m_1} w_3^{m_2} z_1 + w_2^{m_2} w_3^{m_1} z_2 \end{cases}$$

See Wang and Wang's paper for details of the system.

Kathy Piret and Jan Verschelde (UIC)

3

イロト イポト イヨト イヨト

Symmetrical Stewart-Gough platforms

Kathy Piret and Jan Verschelde (UIC)

э

Computational Results

on the symmetrical Stewart-Gough platforms

- Applying the Jacobian criterion globally leads to an augmented system with a mixed volume equal to 4,608.
 Tracking 4,608 paths in 16 variables is much more expensive than tracking 512 paths in 9 variables.
 Sweeping to find all critical points works in a more efficient setup: at most 28 paths in 9 variables.
- By fixing L_i , i = 2, 3, ..., 6, to 1.5, 2.0, and 3.0, the sweep yields four special values for the natural parameter L_1 for each L_i .
- We have replicated the results from Wang and Wang's paper with higher precision than what they reported.
 In addition, z₀ can be either positive or negative.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ