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1 Introduction and Problem Statement
solving polynomial systems with homotopy continuation
reconditioning singularities with deflation
global and local problems
detection and location of quadratic turning points
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Puiseux series and the determinant criterion
parabolic interpolation of determinants

3 Applications
three polynomial systems from the literature
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Solving Polynomial Systems
numerical algebraic geometry: numerical analysis and algebraic geometry

Polynomial systems are nonlinear systems with algebraic structure.
This algebraic structure enables to compute

not only all isolated solutions,

but also a numerical irreducible decomposition
→ degrees and dimensions of all irreducible components.

Two key references:

1 Tien-Yien Li. Numerical solution of polynomial systems by homotopy
continuation methods. In Volume XI of Handbook of Numerical Analysis,
pages 209–304, 2003.

2 Andrew J. Sommese and Charles W. Wampler.
The Numerical Solution of Systems of Polynomials Arising in
Engineering and Science. World Scientific, 2005.
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Homotopy Continuation Methods
natural and artificial parameter homotopies

A homotopy h is a family of systems, depending on a parameter.
With continuation methods we track solution paths defined by h.
We distinguish between two types of parameters:

1 a natural parameter λ, for example:

h(λ, x) = λ2 + x2 − 1 = 0.

As λ varies we track the unit circle: (λ, x(λ)) ∈ h−1(0).
2 an artificial parameter t , for example:

h(t , λ, x) =

{
λ2 + x2 − 1 = 0

(λ − 2)t + (λ + 2)(1 − t) = 0.

As t moves from 0 to 1, λ goes from −2 to +2
and we sweep points (λ(t), x(λ(t))) on the unit circle.

Kathy Piret and Jan Verschelde (UIC) continuation for singularities ACA 2009, 25-28 June 4 / 29



Reconditioning Singularities via Deflation
restoring the quadratic convergence of Newton’s method

A solution z to f (x) = 0, f = (f1, f2, . . . , fN), x = (x1, x2, . . . , xn), N > n,

is singular if the Jacobian matrix A(x) =
[

∂fi
∂xj

]
has rank R < n at z.

Choose c ∈ C
R+1 and B ∈ C

n×(R+1) at random.
Introduce R + 1 new multiplier variables µ = (µ1, µ2, . . . , µR+1).
Apply the Gauss-Newton method to


f (x) = 0
A(x)Bµ = 0

cµ = 1

Rank(A(x)) = R
⇓

coRank(A(x)B) = 1

Recurse if necessary, #deflations < multiplicity.
An efficient implementation uses algorithmic differentiation.
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Problems and Applications
some hard motiviating questions

General problem statement:

Given a polynomial system f (λ, x) = 0, λ ∈ C
m, x ∈ C

n,
find values λ for which solutions x are singular.

Two motivating questions:

from real algebraic geometry:
→ can all complex solutions turn real?

from numerical algebraic geometry:
→ what are the real irreducible solution components?
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Complexity Issues
of local and global solutions

Solving the global problem

Given a polynomial system f (λ, x) = 0, λ ∈ C
m, x ∈ C

n,
find values λ for which solutions x are singular.

involves a description of the discriminant variety
and the solution of more difficult polynomial systems.

Instead we consider a local problem, for one parameter λ:

Given a polynomial system f (λ, x) = 0, λ ∈ C
m, x ∈ C

n,
a solution z for λ = λ0 and target value λ1,

find either the solution z for λ = λ1

if no singularities for all λ(t) = (1 − t)λ0 + tλ1,
or the first (t , λ(t), x(t)) for which z = (λ(t), x(t)) is singular.
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Quadratic Turning Points
most common type of singularity

1 Definition: solution paths turn back
when the parameter increases past a quadratic turning point.

Properties: a double solution, corank of Jacobian equals one,
transition point: complex ↔ real.

2 Detection: monitor orientation of tangent vectors.
Two consecutive tangent vectors v(t1) and v(t2).
Criterion: 〈v(t1), v(t2)〉 < 0 ⇒ v(t) ⊥ t−axis for t ∈ [t1, t2].
Tangents are simple byproduct of predictor-corrector path tracker.

3 Location: shooting method for step size.
Consider x(t) = x(t1) + h v(t1), find h and t : v(t) ⊥ t−axis.
Overshot turning point for h = h2, at x(t2) path has turned back.
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Sweeping a Circle
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Difficulties to Extend Approach
for any type of isolated singularity along a path

Detecting and locating quadratic turning points goes well.

Extending to any type of singularity has two difficulties:
1 detection: flip of tangent orientation no longer suffices

→ the path tracker glides over the singularity
2 location: higher order singularities may have corank > 1

→ the path tracker fails to converge

Solutions for these difficulties:
1 use a Jacobian criterion for detection, and
2 algebraic higher order predictor for location.

Common tool: Puiseux series expansion at a point along the path.
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Neural Network Model
a family of polynomial systems for any dimension n

V.W. Noonburg. A neural network modeled by an adaptive Lotka-Volterra
system. SIAM J. Appl. Math. 1989.

Applying a sweep to the polynomial systems:

f (x , λ) =




x1x2
2 + x1x2

3 − λx1 + 1 = 0

x2x2
1 + x2x2

3 − λx2 + 1 = 0

x3x2
1 + x3x2

2 − λx3 + 1 = 0

(λ + 1)(1 − t) + (λ − 1)t = 0

As t goes from 0 to 1, λ goes from −1 to +1.

The tangent does not flip at the origin.
The path tracker does not detect the quadruple point for λ = 0.
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The Plot of Solution Paths for Neural Networks
the solution paths are really straight
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Jumping Over Singularities
in case of jumping over a bifurcation point [Z. Mei]

The shaded blue part is the region where Newton’s method converges.
On straight curves, the path tracker will never cut back its step size.
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Puiseux or Fractional Power Series
expanding an algebraic curve at a point

The homotopy h(x, t) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Because x(t) is an algebraic curve, at any point t∗ the corresponding
solution x(t∗) = z = (z1, z2, . . . , zn) admits the expansion:{

xk (s) = zk svk (1 + O(s)) k = 1, 2, . . . , n, vk ∈ Z

sω = t − t∗ as t → t∗, s → 0

Special case: t∗ = 0: sω = t or s = t1/ω and xk → zk tvk /ω as t → 0.

The winding number ω determines how hard the path curves.

Determinant criterion for singularity along path x(t):

singularity at t∗ ⇔ det(A(x(t∗))) = 0.

Via Puiseux series, determinant of Jacobian matrix is function of t .
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Parabolic Interpolation of Determinants
monitor concavity of determinant as function of t
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Parabolic Interpolation of Determinants
monitor concavity of determinant as function of t
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Parabolic Interpolation of Determinants
monitor concavity of determinant as function of t

Kathy Piret and Jan Verschelde (UIC) continuation for singularities ACA 2009, 25-28 June 18 / 29



Parabolic Interpolation of Determinants
monitor concavity of determinant as function of t
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Detection Algorithm Specification

Input: h(x, t) = 0; a homotopy
(t1, t2, t3), t1 < t2 < t3; consecutive samples
(z1, z2, z3): h(zi , ti) = 0, i = 1, 2, 3; with solutions
(d1, d2, d3): di = det(∂xh(zi , ti)), i = 1, 2, 3; and determinants
δ > 0; tolerance on t3 − t1
ε > 0. tolerance on det()

Output: (t∗, z∗, d∗), h(z∗, t∗) = 0; a solution
d∗ = det(∂xh(z∗, t∗)), |d∗| < ε; that is singular

or ∅, updated (ti , zi , di), i = 1, 2, 3. no singular solution
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Detection Algorithm Implementation

while (|d1| > |d2| < |d3|) and (t3 − t1 > δ) do loop invariants
t∗ := minP((t1, t2, t3), (d1, d2, d3)); parabolic minimum
(z∗, d∗) := Newton(h, t∗, z2); correct solution
if |d∗| < ε then first stop test

return (t∗, z∗, d∗); found singularity
else if |d∗| ≥ |d2| then second stop test

return ∅; no singularity found
else continue loop

if t∗ < t2 adjust t1, t2, t3
then (t3, z3, d3) := (t2, z2, d2); t2 becomes right end
else (t1, z1, d1) := (t2, z2, d2); t2 becomes left end

end if;
(t2, z2, d2) := (t∗, z∗, d∗); d2 remains minimum

end if;
end while.
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Numerical Stability

For determinant values d1, d2, and d3, respectively at consecutive t1,
t2, and t3, t∗ := minP((t1, t2, t3), (d1, d2, d3)) is subject to roundoff error.
t∗ is computed via

T =
t2
1 (d3 − d2) + t2

2 (d1 − d3) + t2
3 (d2 − d1)

2d1(t2 − t3) + 2d2(t3 − t1) + 2d3(t1 − t2)
.

We compute T̃ , replacing in T d1, d2, and d3 respectively by
d1(1 + ε1), d2(1 + ε2), and d3(1 + ε3) for errors ε1, ε2, and ε3.

T̃ − T
T

=
2ε1d1t23 + 2ε2d2t13 + 2ε3d3t12

P
.

with t23, t13, and t12 constants of magnitude > δ
and P = t2

1 (d3 − d2) + t2
2 (d1 − d3) + t2

3 (d2 − d1).
⇒ large relative errors only if d1 ≈ d2 ≈ d3.
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Numerical Conditioning
Worst case: straight path almost touches ellipses.

h(x , λ, t) =




(x − 1 − ε)
(

λ2

4 + x2 − 1
)

(1
4(λ + 1)2 + 4

9(x + 1/2)2 − 1
)

= 0
(1 − t)(λ + 2) + t(λ − 2) = 0

t ∈ [0, 1].

Plots for ε = 0.05:
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Polynomial Systems
from the literature

1 Molecular Configurations:
� Emiris and Mourrain. Computer algebra methods for studying and

computing molecular conformations. Algorithmica 1999.
2 Neural Networks:

� V.W. Noonburg. A neural network modeled by an adaptive
Lotka-Volterra system. SIAM J. Appl. Math. 1989.

3 Symmetrical Stewart-Gough platforms:
� Yu Wang and Yi Wang. Configuration Bifurcations Analysis of Six

Degree-of-Freedom Symmetrical Stewart Parallel Mechanism.
Journal of Mechanical Design 2005.
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Polynomial Systems
the number of solutions in C n for generic choices of parameters

Polynomial Systems n #Solutions
Molecular Configurations 3 16

Neural Networks 3 21
Neural Networks 4 73
Neural Networks 5 233
Neural Networks 10 59049
Neural Networks 15 14,348,907

Symmetrical Stewart-Gough Platforms 9 28 (real)

Table: Polynomial Systems which have higher-order multiple points
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Molecular Configurations
applying the sweep homotopy algorithm to this system

The system is small enough to handle with resultant/symbolic
methods or global methods.

Applying a sweep to molecular configurations:

f (x , λ) =




1
2(x2

2 + 4x2x3 + x2
3 ) + λ(x2

2 x2
3 − 1) = 0

1
2(x2

3 + 4x3x1 + x2
1 ) + λ(x2

3 x2
1 − 1) = 0

1
2(x2

1 + 4x1x2 + x2
2 ) + λ(x2

1 x2
2 − 1) = 0

(λ − 1)(1 − t) + (λ + 1)t = 0.

The tangent flips at the higher-order turning point at the origin.

For λ = ±0.866025403780023 on symmetrical curves of degree 6
and one of the eigenvalues of the Jacobian matrix changes signs.
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Symmetrical Stewart-Gough platforms
nine quadratic polynomial equations

f (x , L1) =




fi = (xi − xi0)
2 + (yi − yi0)

2 + z2
i − L2

i , i = 1, 2, . . . , 6

f7 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − 2R2

1(1 − β))

f8 = (x1 − x0)
2 + (y1 − y0)

2 + (z1 − z0)
2 − R2

1

f9 = (x2 − x0)
2 + (y2 − y0)

2 + (z2 − z0)
2 − R2

1

where 


xi = w1x0 + wm1
2 wm2

3 x1 + wm2
2 wm1

3 x2

yi = w1y0 + wm1
2 wm2

3 y1 + wm2
2 wm1

3 y2

zi = w1z0 + wm1
2 wm2

3 z1 + wm2
2 wm1

3 z2

See Wang and Wang’s paper for details of the system.
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Symmetrical Stewart-Gough platforms
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Computational Results
on the symmetrical Stewart-Gough platforms

Applying the Jacobian criterion globally leads to an augmented
system with a mixed volume equal to 4,608.
Tracking 4,608 paths in 16 variables is much more expensive
than tracking 512 paths in 9 variables.
Sweeping to find all critical points works in a more efficient setup:
at most 28 paths in 9 variables.

By fixing Li , i = 2, 3, . . . , 6, to 1.5, 2.0, and 3.0, the sweep yields
four special values for the natural parameter L1 for each Li .

We have replicated the results from Wang and Wang’s paper with
higher precision than what they reported.
In addition, z0 can be either positive or negative.
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