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Solving Polynomial Systems
what does solving mean?

Before numerical algebraic geometry:

solving systems by numerical homotopy continuation means
to compute approximations to all isolated solutions

What we today understand by solving:

a numerical irreducible decomposition gives the irreducible
factors for each dimension, along with their multiplicities

[Leykin, ISSAC 2008]: Numerical Primary Decomposition.
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the cyclic 8-roots system
a well known benchmark problem

a system of 8 equations in 8 unknowns:

f
�
z ���

�������� �������

z0 � z1 � z2 � z3 � z4 � z5 � z6 � z7 � 0
z0z1 � z1z2 � z2z3 � z3z4 � z4z5 � z5z6 � z6z7 � z7z0 � 0

i � 3 	 4 	�
�
�
�	 7  7�
j � 0

i�
k � j

zk mod 8 � 0

z0z1z2z3z4z5z6z7 � 1 � 0

J. Backelin: "Square multiples n give infinitely many cyclic n-roots".
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.
n � 8 has 4 as divisor, 4 � 22, so infinitely many roots

how to verify numerically?
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Homotopy Continuation Methods
a numerical way to solve polynomial systems

A geometric way to solve a system:
1 the system is a specific instance of a problem class
2 deform the specific instance into a generic, easier problem
3 solve the generic, easier problem
4 track solutions of generic to the specific problem

Four basic tools:
1 scaling and projective transformations
2 root counting and start systems
3 deforming systems and path tracking
4 root refining and endgames
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Multihomogeneous Structures
scaling and projective transformations

Consider the algebraic eigenvalue problem:

Ax � � x 	 x ��� n 	
for some n-by-n matrix A.

Ignoring the structure:
� � 	 x ����� n � 1 �	� n � 1.

Multiprojective space:
� � 	 x ������
�� n �	� 
 � n.

A. Morgan and A. Sommese: A homotopy for solving general
polynomial systems that respects m-homogeneous structures.
Appl. Math. Comput., 24(2):101–113, 1987.
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Multihomogeneous Homotopies
root counting and start systems

Consider Ax � � x, A � � n � n . plain Bézout’s theorem: D � 2n

Add a hyperplane c1x1 � c2x2 ������� � cnxn � c0 � 0 for unique x.
���	� �

x1 
 x2
�

1 1
1 1...

...
0 1
degree table

��

���	� �
x1 
 x2

�
�����

1 � 0
� � 1x1

� � 2x2�����
2 � 0

� � 1x1
� � 2x2...

...
1 c0

�
c1x1

�
c2x2

linear-product start system

The root count B � 1 � 1 ����� 1 � 1 � 1 ����� 1 ������� � 0 � 1 ����� 1 � n is exact!
Solve a polynomial system by degeneration:

1 deform each polynomial into a product of linear polynomials
2 compute intersection of hyperplanes: start solutions
3 deform linear-product start system into original problem
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Coefficient-Parameter Polynomial Continuation
using a cheater’s homotopy

Consider f
�
x 	�� ��� 0, unknowns x ��� n , parameters � � � m .

Let N � be the number of regular solutions of f
�
x 	�� � � 0. Then:

1 compute N � by solving f
�
x 	�� ��� 0 for generic � ��� 0,

2 for any � 1, f
�
x 	 � 1 � t ��� 0 � t � 1 ��� 0, t ��� 0 	 1 � ,

has exactly N � regular roots.

Classical interaction: principle of conservation of number.

T.Y. Li, T. Sauer, and J.A. Yorke: The cheater’s homotopy:
an efficient procedure for solving systems of polynomial equations.
SIAM J. Numer. Anal., 26(5):1241–1251, 1989.

A.P. Morgan and A.J. Sommese:
Coefficient-Parameter Polynomial Continuation.
Appl. Math. Comput., 29(2):123–160, 1989.
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Enumerating All Solutions
a pleasingly parallel computation

If we have given:
1 a program to evaluate a family of systems for

�
x 	 t � ,

2 a function to get the k th start solution, for t � 0.

Then we can execute a pleasingly parallel path tracking:
1 track paths independently from each other,

2 no need to keep all solutions in main memory:

1 write to file as soon as at end of path,
2 size of main memory is not the bottleneck,
3 checkpointing: even supercomputers do crash.
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Endgames
dealing with solution paths at the end

At the end of the paths, solutions
1 may diverge to infinity,
2 or converge to a singular solution.

The homotopy h
�
z
�
s � 	 t � s � � � 0 defines a path

�
z
�
s � 	 t � s � � .

At the end, as t � 1, s � 0.

For s � 0: zk
�
s ��� ck � 1sak � 1 ��� � ck � 2s � ak � 1 � 1 � ��� ������� , k � 1 	 2 	�
�
�
�	 n,

is a fractional power series, w is the winding number.
Observe: ak � 1 	 0: zk � 0, ak � 1 � 0: zk � ck � 1, ak � 1 
 0: zk ��� .

A.P. Morgan, A.J. Sommese, and C.W. Wampler:
A power series method for computing singular solutions to
nonlinear analytic systems. Numer. Math., 63:391–409, 1992.
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Victor Alexandre Puiseux (1820-1883)

In 1850, he gave a first rigorous
proof of the convergence of frac-
tional power series, assuming the
fundamental theorem of algebra.

V. Puiseux: Mémoirs sur les fonc-
tions algébriques. J. Math. Pures
Appl. 32, 1851.

Theorem of Puiseux (see Walker’s Algebraic Curves):
the field of fractional power series over � is algebraically closed.
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back to the cyclic 8-roots problem
applying our basic tools

Recall a system of 8 equations in 8 unknowns:

f
�
z � �

�������� �������

z0 � z1 � z2 � z3 � z4 � z5 � z6 � z7 � 0
z0z1 � z1z2 � z2z3 � z3z4 � z4z5 � z5z6 � z6z7 � z7z0 � 0

i � 3 	 4 	�
�
�
�	 7  7�
j � 0

i�
k � j

zk mod 8 � 0

z0z1z2z3z4z5z6z7 � 1 � 0

Product of the degrees: 8 � � 40 	 320 � 1 	 152 isolated roots.

Enumeration of all 4,140 partitions of � z0 	 z1 	�
�
�
 	 z7 � :
� no improvement from multihomogeneous root count.
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Newton Polytopes and Mixed Volumes
recognizing the sparse structure of a polynomial system

Most polynomials have few nonzero coefficients:

f
�
x � � �

a � A

caxa 	 ca
�� 0 	 xa � xa1

1 xa2
2 ����� xan

n 

The support A of f spans the Newton polytope P � ConvHull

�
A � .

� � �
P1 	 P2 	�
�
�
 	 Pn � collects the Newton polytopes of a system f .

Remember the principle of conservation of number (classical)
or coefficient-parameter polynomial continuation (numerical):

Nc � the number of solutions for generic coefficients c.

Bernshteı̌n’s theorem (1975): Nc depends only on
�

.

In particular: Nc � V
� � � , the mixed volume of

�
.

Special case: P � P1 � P2 � ����� � Pn: Nc � n � volume
�
P � .
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The Theorems of Bernshteı̌n
Mixed volumes relate volume to surface area:

Vn
�
P1 	 P2 	�
�
�
�	 Pn ��� �

v

p1
�
v � Vn � 1

���
vP2 	�
�
�
�	 � vPn � 	

v ��� n, gcd
�
v ��� 1, p1

�
v � � min

x � P1

�
x 	 v � is a support function

�
vPk � � x � Pk � � x 	 v � � pk

�
v � � is a face of Pk .

Theorem A: The number of roots of a generic system equals
the mixed volume of its Newton polytopes.

Theorem B: Solutions at infinity are solutions of systems
supported on faces of the Newton polytopes.

D.N. Bernshteı̌n: The number of roots of a system of equations.
Functional Anal. Appl. 9(3):183–185, 1975.

F. Minding: Über die Bestimmung des Grades einer durch Elimination
hervorgehenden Gleichung. J. Reine Angew. Math. 22: 178-183, 1841.
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Polyhedral Homotopies
constructive proofs of Bernshteı̌n’s theorems

Polyhedral homotopies implement Bernshteı̌n’s theorems.

An effective complement to the cheater’s homotopy.

The methods are optimal in the sense that every solution path
converges to an isolated solution 
�
�



�
�
 provided the system is sufficiently generic.

B. Huber and B. Sturmfels: A polyhedral method for solving sparse
polynomial systems. Math. Comp. 64(212): 1541–1555, 1995.

T.Y. Li: Numerical solution of polynomial systems by homotopy
continuation methods.
In Volume XI of Handbook of Numerical Analysis, pp. 209–304, 2003.
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Tropical Algebraic Geometry
a new language describing asymptotics of varieties

Polyhedral methods in a tropical world:
1 tropicalizations of polynomials and polytopes

� introduce t in f : f
�
x 
 t �����

a � A

caxat �
	 a �
� lift supports and polytopes �P � ConvHull

� ��
a 
�� � a ����� a � A

� �
� a tropicalization is an inner normal fan of �P

2 tropisms� are in the intersection of normal cones
to the edges of the lifted polytopes,� give the leading powers to the Puiseux expansions for the start of
the solution paths in the polyhedral homotopies.

J. Maurer: Puiseux expansion for space curves.
Manuscripta Math. 32: 91–100, 1980.
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a Toolbox for Mixed Volume Computation
and polyhedral homotopies to solve a generic system

T. Gao., T.Y. Li, and M. Wu: Algorithm 846: MixedVol:
a software package for mixed-volume computation.
ACM Trans. Math. Softw. 31(4):555–560, 2005.

available in PHCpack:

version 2.3.13 on 2006-08-25
Ada translation of MixedVol available in phc -m

version 2.3.31 on 2007-07-13
stable mixed volumes in phc -m
� no longer miss solutions with zero components

dynamic enumeration of mixed cells in

DEMiCs by Tomohiko Mizutani and Akiko Takeda

HOM4PS-2.0 by Tsung-Lin Lee, T.Y. Li, and Chih-Hsiung Tsai

Jan Verschelde (UIC) Toolboxes and Blackboxes 23 May 2008 21 / 45



a Toolbox for Mixed Volume Computation
and polyhedral homotopies to solve a generic system

T. Gao., T.Y. Li, and M. Wu: Algorithm 846: MixedVol:
a software package for mixed-volume computation.
ACM Trans. Math. Softw. 31(4):555–560, 2005.

available in PHCpack:

version 2.3.13 on 2006-08-25
Ada translation of MixedVol available in phc -m

version 2.3.31 on 2007-07-13
stable mixed volumes in phc -m
� no longer miss solutions with zero components

dynamic enumeration of mixed cells in

DEMiCs by Tomohiko Mizutani and Akiko Takeda

HOM4PS-2.0 by Tsung-Lin Lee, T.Y. Li, and Chih-Hsiung Tsai

Jan Verschelde (UIC) Toolboxes and Blackboxes 23 May 2008 21 / 45



A First Blackbox Solver

Source code of PHCpack was first released in August 1997.

toolboxes via options of the executable phc
� tools assume some skill of the user

a blackbox solver: phc -b input output
� a solver has to make assumptions

How phc -b works:
1 computes various root counts
2 solves start system with lowest root count
3 track paths to all isolated solutions
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Mixed Volume of cyclic 8-roots

Recall: 8 � � 40 	 320 as Bézout bound.

Mixed volume: 2,560 > 1,152 = #isolated roots.

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizutani:
PHoM – a polyhedral homotopy continuation method for polynomial
systems. Computing 73(4): 55–77, 2004.

applied to cyclic 13-roots: mixed volume = 2,704,156 = #paths

but what about components of solutions?
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Numerical Irreducible Decomposition
what solving a polynomial system means

input: f
�
x � � 0 a polynomial system with x � � n

Stage 1: represent the k -dimensional solutions Zk , k � 0 	 1 	�
�
�

output: sequence �W0 	 W1 	�
�
�
 	 Wn � 1 � of witness sets

Wk � �
Ek 	 E � 1

k

�
0 ��� Jk � , deg Zk ��� �

E � 1
k

�
0 ��� Jk �

Ek � f + k random hyperplanes, Jk = “junk”

Stage 2: decompose Zk , k � 0 	 1 	�
�
�
 into irreducible factors

output: Wk � � Wk1 	 Wk2 	�
�
�
 	 Wknk � , k � 1 	 2 	�
�
�
�	 n � 1
nk irreducible components of dimension k

output: a numerical irreducible decomposition of f � 1 � 0 �
is a sequence of partitioned witness sets
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Wk � �
Ek 	 E � 1

k

�
0 ��� Jk � , deg Zk ��� �

E � 1
k

�
0 ��� Jk �

Ek � f + k random hyperplanes, Jk = “junk”

Stage 2: decompose Zk , k � 0 	 1 	�
�
�
 into irreducible factors

output: Wk � � Wk1 	 Wk2 	�
�
�
 	 Wknk � , k � 1 	 2 	�
�
�
�	 n � 1
nk irreducible components of dimension k

output: a numerical irreducible decomposition of f � 1 � 0 �
is a sequence of partitioned witness sets
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Computing Witness Sets for f � 1 �
0 �

two toolboxes for a witness set computation

Witness set Wk � �
Ek 	 E � 1

k

�
0 ��� Jk � for Zk

� f � 1 � 0 � , k � dimZk ,
consists of Ek � f � k random hyperplanes
and its solutions, � �

E � 1
k

�
0 ��� Jk � � deg Zk .

top down: use a cascade of homotopies

� benefits from existing blackbox solver� requires top dimension on input

bottom up: with an equation-by-equation solver

� requires no guess for top dimension� performance depends on order of equations
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Example of a Homotopy in the Cascade

To compute numerical representations of the twisted cubic and the four
isolated points, as given by the solution set of one polynomial system,
we use the following homotopy:

H
�
x 	 z1 	 t � �

���
�
�� �

x2
1 � x2 � � x1 � 0 
 5 ��

x3
1 � x3 � � x2 � 0 
 5 ��

x1x2 � x3 � � x3 � 0 
 5 �
��

� t

�� � 1

� 2

� 3

��
z1

t
�
c0 � c1x1 � c2x2 � c3x3 � � z1

����� � 0

At t � 1: H
�
x 	 z1 	 t � �	� � f � � x 	 z1 � � 0.

At t � 0: H
�
x 	 z1 	 t � � f

�
x ��� 0.

As t goes from 1 to 0, the hyperplane is removed from the system,
and z1 is forced to zero.
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A Cascade of Homotopies

Denote � i as an embedding of f
�
x � � 0 with i random hyperplanes

and i slack variables z � �
z1 	 z2 	�
�
�
 	 z i � .

Theorem (Sommese - Verschelde): J. Complexity 16(3):572–602, 2000

1 Solutions with
�
z1 	 z2 	�
�
�
 	 z i � � 0 contain deg W generic points

on every i-dimensional component W of f
�
x � � 0.

2 Solutions with
�
z1 	 z2 	�
�
�
 	 z i � �� 0 are regular; and

solution paths defined by

Hi
�
x 	 z 	 t � � t � i

�
x 	 z � � �

1 � t ��� � i � 1
�
x 	 z �

z i � � 0

starting at t � 1 with all solutions with z i
�� 0

reach at t � 0 all isolated solutions of � i � 1
�
x 	 z ��� 0.
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A refined version of Bézout’s theorem

Observe: The linear equations added to f
�
x ��� 0 in the cascade of

homotopies do not increase the total degree.

Let f � �
f1 	 f2 	�
�
�
�	 fn � be a system of n polynomial equations

in N variables, x � �
x1 	 x2 	�
�
�
 	 xN � .

Bézout bound:
n�

i � 1

deg
�
fi ��� N�

j � 0

�
j deg

�
Wj � 	

where Wj is a j-dimensional solution component
of f

�
x � � 0 of multiplicity � j .

Note: j � 0 gives the “classical” theorem of Bézout.
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#paths for cascade on cyclic 8-roots

The flow chart below summarizes the number of solution paths
traced in the cascade of homotopies.

4,176 paths � 57 paths to infinity

144 solutions with z1 � 0

3,975 solutions with z1
�� 0

� W1 witness set

�

3,975 paths � 2,328 paths to infinity

1,647 converging paths ���W0 witness
superset

The set �W0 contains, in addition to the 1,152 isolated roots,
also points on the solution curve. The points in �W0 which lie
on the curve are considered junk and must be filtered out.
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Toolboxes and Blackboxes

1 Solving Polynomial Systems
what does solving mean?
four basic tools

2 Polyhedral Methods
recognizing sparse structures
tropical algebraic geometry

3 Numerical Irreducible Decomposition
witness sets represent components of solutions
wrapping software up in interfaces

4 Towards a Polyhedral Method for Curves
computing certificates for solution curves
some preliminary computational experiments
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Interfaces to PHCpack

A first simple Maple interface appeared in
A.J. Sommese, J. Verschelde, and C.W. Wampler:

Numerical irreducible decomposition using PHCpack. In Algebra,
Geometry, and Software Systems, pp. 109–130, Springer, 2003.

Accessing PHCpack in scripting environments:

PHCmaple (with Anton Leykin): Maple tools

PHClab (with Yun Guan) for MATLAB and Octave (MPITB)

Benefits: visualization, symbolic manipulation, high level parallelism.
Programmer’s interfaces:

PHClib: C interface to MPI

PHCpy (with Kathy Piret): Python module in release 2.3.41

Benefits to open source mathematics software development.
PHCpack is one of the optional packages in Sage,
thanks to Marshall Hampton, Kathy Piret, and William Stein.
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Certifying Solution Components
some problems with current approach

Witness sets are good numerical representations for solution sets,
but:

Refined Bézout bound:
n�

i � 1

deg
�
fi � � N�

j � 0

�
j deg

�
Wj � 


But Bézout bounds are often too large for many systems.

Adding hyperplanes and slack variable increases mixed volume.

Examples: cyclic 8 roots: 2,560 � 4,176,
cyclic 12 roots: 500,352 � 983,952.

Need certificates, cheaper than witness sets.

Tropical view: look at infinity, look at sparser systems.
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Computing a Series Expansion
a staggered approach to find a certificate for a solution curve

tropicalization

compute tropisms

�
�
� ���

no tropism
� no root at �

solve initial forms

�
�
� ���

no root at �
� no series

compute 2nd term

�
�
� ���

no series
� no curve�

series
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Tropisms coming from Endgames
joint work with Birk Huber, Numerical Algorithms 18(1):91–108, 1998

Directions of diverging paths for cyclic 8-roots:

tropisms m accuracy � paths
� � � 1 
 1 
 � 1 
 1 
 � 1 
 1 
 � 1 
 1 � 1 10 � 3 32� � � 1 
 0 
 0 
 1 
 0 
 � 1 
 1 
 0 � 1 10 � 7 8� �

0 
 � 1 
 0 
 0 
 1 
 0 
 � 1 
 1 � 1 10 � 6 8� �
1 
 0 
 � 1 
 0 
 0 
 1 
 0 
 � 1 � 1 10 � 7 8� � � 1 
 1 
 0 
 � 1 
 0 
 0 
 1 
 0 � 1 10 � 6 8� �
0 
 � 1 
 1 
 0 
 � 1 
 0 
 0 
 1 � 1 10 � 6 8� �
1 
 0 
 � 1 
 1 
 0 
 � 1 
 0 
 0 � 1 10 � 7 8� �
0 
 1 
 0 
 � 1 
 1 
 0 
 � 1 
 0 � 1 10 � 6 8� �
0 
 0 
 1 
 0 
 � 1 
 1 
 0 
 � 1 � 1 10 � 6 8

Every tropism v defines an initial form
�

vf .
Every equation in

�
vf has at least two monomials� admits a solution with all components nonzero.
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An Initial Form of the cyclic 8-roots system

For the tropism v � � � 1 	 0 	 0 	 � 1 	 0 	 � 1 	 � 1 	 0 � :

�
vf
�
z ���

������������ �����������

z0 � z5 � 0
z0z1 � z4z5 � z7z0 � 0

z0z1z2 � z7z0z1 � 0
z5z6z7z0 � z7z0z1z2 � 0

z4z5z6z7z0 � z5z6z7z0z1 � 0
z0z1z2z3z4z5 � z4z5z6z7z0z1 � z5z6z7z0z1z2 � 0

z4z5z6z7z0z1z2 � z7z0z1z2z3z4z5 � 0
z0z1z2z3z4z5z6z7 � 1 � 0

Observe: for all za:
�
a 	 v ��� � 1,

except for the last equation:
�
a 	 v � � 0.
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Transforming Coordinates
to eliminate one variable

The tropism v � � � 1 	 0 	 0 	 � 1 	 0 	 � 1 	 � 1 	 0 � defines a change of
coordinates:

���������������� ���������������

z0 � x � 1
0

z1 � x0
0 x1

z2 � x0
0 x2

z3 � x � 1
0 x3

z4 � x0
0 x4

z5 � x � 1
0 x5

z6 � x � 1
0 x6

z7 � x0
0 x7

�
vf
�
x ���

������������������ �����������������

1
�

x5 � 0

x1
�

x4x5
�

x7 � 0

x1x2
�

x7x1 � 0

x5x6x7
�

x7x1x2 � 0

x4x5x6x7
�

x5x6x7x1 � 0

x1x2x3x4x5
�

x4x5x6x7x1�
x5x6x7x1x2 � 0

x4x5x6x7x1x2
�

x7x1x2x3x4x5 � 0

x1x2x3x4x5x6x7 � 1 � 0

After clearing x0,
�

vf consists of 8 equations in 7 unknowns.
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Solving an overconstrained Initial Form

Choose eight random numbers � k � � , k � 1 	 2 	�
�
�
�	 8,
to introduce a slack variable s:

�
vf
�
x 	 s � �

������������������ �����������������

1 � x5 � � 1s � 0

x1 � x4x5 � x7 � � 2s � 0

x1x2 � x7x1 � � 3s � 0

x5x6x7 � x7x1x2 � � 4s � 0

x4x5x6x7 � x5x6x7x1 � � 5s � 0

x1x2x3x4x5 � x4x5x6x7x1 � x5x6x7x1x2 � � 6s � 0

x4x5x6x7x1x2 � x7x1x2x3x4x5 � � 7s � 0

x1x2x3x4x5x6x7 � 1 � � 8s � 0

The mixed volume of this system is 25 and is exact.
Among the 25 solutions, there are 8 with s � 0.
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The first Term of a Puiseux Expansion

For f
�
x � � �

ef
�
x � � O

�
x0 � , e � �

1 	 0 	 0 	 0 	 0 	 0 	 0 	 0 � ,
we use a solution as the leading term of a Puiseux expansion:

������������ �����������

x0 � t1

x1 � �
0 
 5 � 0 
 5i � t0 � y1 t

x2 � �
1 � i � t0 � y2 t

x3 � � � i � t0 � y3 t
x4 � � � 0 
 5 � 0 
 5i � t0 � y4 t
x5 � � � 1 � t0 � y5 t
x6 � �

i � t0 � y6 t
x7 � � � 1 � i � t0 � y7 t

i ��� � 1 


Decide whether solution is isolated: substitute series in f
�
x � � 0

and solve for yk , k � 1 	 2 	�
�
�
 	 7 in lowest order terms of t .
� solve an overdetermined linear system in the coefficients
of the 2nd term of the Puiseux expansion.
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The second Term of a Puiseux Expansion

Because we find a nonzero solution for the yk coefficients,
we use it as the second term of a Puiseux expansion:

������������ �����������

x0 � t1

x1 � �
0 
 5 � 0 
 5i � t0 � � � 0 
 5i � t

x2 � �
1 � i � t0 � � � i � t

x3 � � � i � t0 � �
1 � i � t

x4 � � � 0 
 5 � 0 
 5i � t0 � �
0 
 5i � t

x5 � � � 1 � t0 � �
0 � t

x6 � �
i � t0 � � � 1 � i � t

x7 � � � 1 � i � t0 � �
i � t

i � � � 1 


Substitute series in f
�
x � : result is O

�
t2 � .
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the cyclic 12-roots problem

According to J. Backelin, also here infinitely many solutions.

Mixed volume 500,352 and increases to 983,952
by adding one random hyperplane and slack variable.

Like for cyclic 8, v � � � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 �
is a tropism. Mixed volume of

�
vf
�
x 	 s � � 0 is 49,816.

One of the solutions is

x0 � t x1 � 0 � 5 � 0 � 866025403784439i
x2 � � 1 � 0 x3 � � 0 � 5 � 0 � 866025403784439i
x4 � � 0 � 5

�
0 � 866025403784439i x5 � 0 � 5

�
0 � 866025403784439i

x6 � � 1 � 0 x7 � � 0 � 5
�

0 � 866025403784438i
x8 � 1 � 0 x9 � 0 � 5

�
0 � 866025403784438i

x10 � 0 � 5 � 0 � 866025403784439i x11 � � 0 � 5 � 0 � 866025403784439i

It satisfies not only
�

vf , but also f itself.
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An Exact Solution for cyclic 12-roots

For the tropism v � � � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 	 � 1 � :
z0 � t � 1 z1 � t

�
1
2 � 1

2 i � 3 �
z2 � � t � 1 z3 � t

� � 1
2 � 1

2 i � 3 �
z4 � t � 1

� � 1
2 � 1

2 i � 3 � z5 � t
�

1
2 � 1

2 i � 3 �
z6 � � t � 1 z7 � t

� � 1
2 � 1

2 i � 3 �
z8 � t � 1 z9 � t

�
1
2 � 1

2 i � 3 �
z10 � t � 1

�
1
2 � 1

2 i � 3 � z11 � t
� � 1

2 � 1
2 i � 3 �

makes the system entirely and exactly equal to zero.
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Numerical Algebraic Geometry
and its ramifications

Numerical Algebraic Geometry applies numerical analysis
to solve problems in algebraic geometry.

An inspiration for several research developments:

Numerical Schubert Calculus
Birk Huber, Frank Sottile, and Bernd Sturmfels
� homotopies for problems in enumerative geometry

Numerical Jet Geometry
Greg Reid and Wenyuan Wu
� a new way for solving differential algebraic equations

Numerical Polynomial Algebra
Hans Stetter; Barry Dayton and Zhonggang Zeng
� symbolic-numeric algorithms for polynomials
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