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Outline of the Talk

1. Homotopies and Path Tracking

the theorem of Bézout, predictor-corrector methods,

some complexity issues

2. Numerical Algebraic Geometry

extend solving to positive dimensional solution components

3. Numerical Irreducible Decomposition

decompose components into irreducible factors

4. Software and Applications

the software PHCpack, illustrations of application fields
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Numerical Homotopy Continuation Methods

If we wish to solve f(x) = 0, then we construct a system g(x) = 0

whose solutions are known. Consider the homotopy

H(x, t) := (1− t)g(x) + tf(x) = 0.

By continuation, we trace the paths starting at the known solutions

of g(x) = 0 to the desired solutions of f(x) = 0, for t from 0 to 1.

homotopy continuation methods are symbolic-numeric:

homotopy methods treat polynomials as algebraic objects,

continuation methods use polynomials as functions.

geometric interpretation: move from general to special,

solve special, and move solutions from special to general.

3



'

&

$

%

Product Deformations
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x2 − 1 = 0
y2 − 1 = 0



 (1−t) +











x2 + 4y2 − 4 = 0
2y2 − x = 0



 t, γ ∈ C
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The theorem of Bézout

f = (f1, f2, . . . , fn)

di = deg(fi)

total degree D :

D =
n

∏

i=1

di

g(x) =































α1x
d1

1 − β1 = 0

α2x
d2

2 − β2 = 0
...

αnx
dn
n − βn = 0

start

system

αi, βi ∈ C

random

Theorem: f(x) = 0 has at most D isolated solutions in Cn,

counted with multiplicities.

Sketch of Proof: V = { (f,x) ∈ P(HD)× P(Cn) | f(x) = 0 }
Σ′ = {(f,x) ∈ V | det(Dxf(x)) = 0}, Σ = π1(Σ

′), π1 : V → P(HD)

Elimination theory: Σ is variety ⇒ P(HD)− Σ is connected.
Thus h(x, t) = (1− t)g(x) + tf(x) = 0 avoids Σ, ∀t ∈ [0, 1).
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Implicitly defined curves

Consider a homotopy hk(x(t), y(t), t) = 0, k = 1, 2.

By ∂
∂t
on homotopy:

∂hk

∂x
∂x
∂t
+ ∂hk

∂y

∂y

∂t
+ ∂hk

∂t
∂t
∂t
= 0, k = 1, 2.

Set ∆x := ∂x
∂t
, ∆y := ∂y

∂t
, and ∂t

∂t
= 1.

Increment t := t+∆t

Solve

[

∂h1

∂x
∂h1

∂y

∂h2

∂x
∂h2

∂y

][

∆x

∆y

]

= −
[

∂h1

∂t

∂h2

∂t

]

(Newton)

Update

{

x := x+∆x

y := y +∆y
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Predictor-Corrector Methods

loop

1. predict
�

�
�

tk+1 := tk +∆t

x(k+1) := x(k) +∆x

2. correct with Newton

3. if convergence

then enlarge ∆t

continue with k + 1

else reduce ∆t

back up and restart at k

until t = 1.
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Robustness of Continuation Methods

sure to find all roots at the end of the paths?

• dealing with curve jumping:
1. fix #Newton steps to force quadratic convergence;

2. rerun clustered paths with same discretization of t.

• Robust step control by interval methods, see
R.B. Kearfott and Z. Xing: An interval step control for continuation

methods. SIAM J. Numer. Anal. 31(3): 892–914, 1994.

• Root of multiplicity µ will appear at the end of the paths
as a cluster of µ roots.

Use “endgames”, eventually in multi-precision arithmetic.
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Complexity Issues

The Problem: a hierarchy of complexity classes

P : evaluation of a system at a point

NP : find one root of a system

#P : find all roots of a system (intractable!)

Complexity of Homotopies: for bounds on #Newton steps in a

linear homotopy, see

L. Blum, F. Cucker, M. Shub, and S. Smale: Complexity and Real

Computation. Springer 1998.

M. Shub and S. Smale: Complexity of Bezout’s theorem V: Polynomial

Time. Theoretical Computer Science 133(1):141–164, 1994.

On average, we can find an approximate zero in polynomial time.
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Some Literature

E.L. Allgower and K. Georg: Numerical Continuation Methods, an

Introduction. Springer 1990. To appear in the SIAM Classics in Applied

Mathematics Series.

E.L. Allgower and K. Georg: Numerical Path Following. In Techniques of

Scientific Computing (Part 2), edited by P.G. Ciarlet and J.L. Lions

volume 5 of Handbook of Numerical Analysis, pages 3–203. North-Holland,

1997.

A. Morgan: Solving polynomial systems using continuation for

engineering and scientific problems. Prentice-Hall, 1987.

T.Y. Li: Solving polynomial systems. The Mathematical Intelligencer

9(3):33–39, 1987.

T.Y. Li: Numerical solution of multivariate polynomial systems by

homotopy continuation methods. Acta Numerica 6:399–436, 1997.
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The software PHCpack

J. Verschelde: Algorithm 795: PHCpack: A

general-purpose solver for polynomial systems by

homotopy continuation. ACM Transactions on

Mathematical Software 25(2): 251-276, 1999.

Available via http://www.math.uic.edu/~jan/download.html.

Modes of operation:

1. As a blackbox: phc -b input output.

2. In toolbox mode (call phc with other options).

3. The library PHCpack, in Ada with C interface, used with MPI.
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Papers documenting the usefulness of PHCpack

R.S. Datta: Using Computer Algebra To Compute Nash Equilibria. To be

presented at ISSAC 2003.

C. Durand and C.M. Hoffmann: Variational Constraints in 3D. In Proceedings

of the International Conference on Shape Modeling and Applications,

Aizu-Wakamatsu, Japan, pages 90-98, IEEE Computer Society, 1999.

C. Durand and C.M. Hoffmann: A systematic framework for solving

geometric constraints analytically. J. Symbolic Computation

30(5):493-520, 2000.

B. Haas: A Simple Counterexample to Kouchnirenko’s Conjecture.

Beitraege zur Algebra und Geometrie/Contributions to Algebra and Geometry

43(1):1-8, 2002.

E. Lee and C. Mavroidis: Solving the Geometric Design Problem of Spatial

3R Robot Manipulators Using Polynomial Continuation. Journal of

Mechanical Design, Transactions of the ASME 124(4):652-661, 2002.

E. Lee, C. Mavroidis, and J. Morman: Geometric Design of Spatial 3R

Manipulators. Proceedings of the 2002 NSF Design, Service, and

Manufacturing Grantees and Research Conference, San Juan, Puerto Rico,

January 7-10, 2002.
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More papers documenting the usefulness of PHCpack

M. Oskarsson, A. Zisserman and K. Astrom: Minimal Projective

Reconstruction for combinations of Points and Lines in Three Views.

Electronic Proceedings of BMVC2002 - The 13th British Machine Vision

Conference 2002, pages 63 - 72.

P.A. Parillo and B. Sturmfels: Minimizing Polynomial Functions. presented at

the Workshop on Algorithmic and Quantitative Aspects of Real Algebraic

Geometry in Mathematics and Computer Science, held at DIMACS, Rutgers

University, March 12-16, 2001.

H. Schreiber, K. Meer, and B.J. Schmitt: Dimensional synthesis of planar

Stephenson mechanisms for motion generation using circlepoint search

and homotopy methods. Mechanism and Machine Theory 37(7):717-737,

2002.

F. Sottile: Real Schubert Calculus: Polynomial systems and a conjecture

of Shapiro and Shapiro. Experimental Mathematics 9(2): 161-182, 2000.

C.W. Wampler: Isotropic coordinates, circularity and Bezout numbers:

planar kinematics from a new perspective. Proceedings of the 1996

ASME Design Engineering Technical Conference. Irvine, CA, Aug 18–22,

1996. (CD-ROM).

F. Xie, G. Reid, and S. Valluri: A numerical method for the one dimensional

action functional for FBG structures. Can J. Phys. 76: 1-21, 2002.
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Solution sets to polynomial systems

Polynomial in One Variable System of Polynomials

one equation, one variable n equations, N variables

solutions are points points, lines, surfaces, . . .

multiple roots sets with multiplicity

Factorization:
∏

i

(x− ai)
µi Irreducible Decomposition

Numerical Representation

set of points set of witness sets

14
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Joint Work with A.J. Sommese and C.W. Wampler

A.J. Sommese and JV: Numerical homotopies to compute generic points on

positive dimensional algebraic sets. Journal of Complexity 16(3):572–602,

2000.

A.J. Sommese, JV and C.W. Wampler: Numerical decomposition of the

solution sets of polynomial systems into irreducible components. SIAM

J. Numer. Anal. 38(6):2022–2046, 2001.

A.J. Sommese, JV and C.W. Wampler: Using monodromy to decompose

solution sets of polynomial systems into irreducible components. In

Application of Algebraic Geometry to Coding Theory, Physics and

Computation, ed. by C. Ciliberto et al., pages 297–315, Kluwer AP.

A.J. Sommese, JV and C.W. Wampler: Symmetric functions applied to

decomposing solution sets of polynomial systems. SIAM J. Numer.

Anal. 40(6):2026–2046, 2002.

A.J. Sommese, JV and C.W. Wampler: Advances in polynomial continuation

for solving problems in kinematics. Paper DETC2002/MECH-34254, Proc.

ASME Design Engineering Technical Conf. (CDROM), Montreal, Quebec,

Sept. 29-Oct. 2, 2002.

A.J. Sommese, JV and C.W. Wampler: Numerical irreducible decomposition

using PHCpack. In Algebra, Geometry, and Software Systems, edited by M.

Joswig and N. Takayama, pages 109–130, Springer-Verlag, 2003.
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An Illustrative Example

f(x, y, z) =















(y − x2)(x2 + y2 + z2 − 1)(x− 0.5) = 0
(z − x3)(x2 + y2 + z2 − 1)(y − 0.5) = 0

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5) = 0

Irreducible decomposition of Z = f−1(0) is

Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}
with 1. Z21 is the sphere x

2 + y2 + z2 − 1 = 0,
2. Z11 is the line (x = 0.5, z = 0.5

3),

3. Z12 is the line (x =
√
0.5, y = 0.5),

4. Z13 is the line (x = −
√
0.5, y = 0.5),

5. Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0),

6. Z01 is the point (x = 0.5, y = 0.5, z = 0.5).

16
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An Illustrative Example - the plots

–1–0.500.51

–2

0

2

–2

–1

0

1

2

–1–0.500.51

–2

0

2

–2

–1

0

1

2
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Witness Sets

A witness point is a solution of a polynomial system which lies

on a set of generic hyperplanes.

• The number of generic hyperplanes used to isolate a point from
a solution component

equals the dimension of the solution component.

• The number of witness points on one component cut out by the
same set of generic hyperplanes

equals the degree of the solution component.

A witness set for a k-dimensional solution component consists of

k random hyperplanes and a set of isolated solutions of the

system cut with those hyperplanes.

18
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Membership Test

Does the point z belong to a component?

Given: a point in space z ∈ CN ; a system f(x) = 0;

and a witness set W , W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

1. Let Lz be a set of hyperplanes through z, and define

h(x, t) =







f(x) = 0

Lz(x)t+ L(x)(1− t) = 0

2. Trace all paths starting at w ∈ Z, for t from 0 to 1.

3. The test (z, 1) ∈ h−1(0)? answers the question above.

19
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Membership Test – an example

L Lz f−1(0)

s
z 6∈ f−1(0)

h(x, t) =







f(x) = 0

Lz(x)t+ L(x)(1− t) = 0

20
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Numerical Algebraic Geometry Dictionary

Algebraic example Numerical
Geometry in 3-space Analysis

variety collection of points, polynomial system
algebraic curves, and + union of witness sets, see below
algebraic surfaces for the definition of a witness set

irreducible a single point, or polynomial system
variety a single curve, or + witness set

a single surface + probability-one membership test

generic point random point on point in witness set; a witness point
on an an algebraic is a solution of polynomial system on the

irreducible curve or surface variety and on a random slice whose
variety codimension is the dimension of the variety

pure one or more points, or polynomial system
dimensional one or more curves, or + set of witness sets of same dimension
variety one or more surfaces + probability-one membership tests

irreducible several pieces polynomial system
decomposition of different + array of sets of witness sets and
of a variety dimensions probability-one membership tests

21
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Factoring Solution Components

Input: f(x) = 0 polynomial system with a positive dimensional

solution component, represented by witness set.

coefficients of f known approximately, work with limited precision

Wanted: decompose the component into irreducible factors,

for each factor, give its degree and multiplicity.

Symbolic-Numeric issue: essential numerical information

(such as degree and multiplicity of each factor),

is obtained much faster than the full symbolic representation.

E. Kaltofen: Challenges of symbolic computation: my favorite open

problems. J. Symbolic Computation 29(6): 891–919, 2000.

23



'

&

$

%

Related Work

Y. Huang, W. Wu, H.J. Stetter, and L. Zhi: Pseudofactors of multivariate

polynomials. In Proceedings of ISSAC 2000, ed. by C. Traverso, pages

161–168, ACM 2000.

R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas and S.M. Watt:

Towards factoring bivariate approximate polynomials. In Proceedings of

ISSAC 2001, ed. by B. Mourrain, pages 85–92, ACM 2001.

A. Galligo and D. Rupprecht: Semi-numerical determination of irreducible

branches of a reduced space curve. In Proceedings of ISSAC 2001, ed. by

B. Mourrain, pages 137–142, ACM 2001.

A. Galligo and D. Rupprecht: Irreducible decomposition of curves. J.

Symbolic Computation 33(5):661–677, 2002.

T. Sasaki: Approximate multivariate polynomial factorization based on

zero-sum relations. In Proceedings of ISSAC 2001, ed. by B. Mourrain,

pages 284–291, ACM 2001.

R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt: A geometric-numeric

algorithm for absolute factorization of multivariate polynomials. In

Proceedings of ISSAC 2002, ed. by T. Mora, pages 37–45, ACM 2002.

E. Kaltofen and J. May: On approximate irreducibility of polynomials in

several variables. To appear in Proceedings of ISSAC 2003.
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The Riemann Surface of z3 − w = 0:

–2
–1

0
1

2Re(z)
–2

–1

0

1

2

Im(z)

–1

–0.5

0

0.5

1

Re(z^1/3)

R.M. Corless and D.J. Jeffrey: Graphing elementary Riemann surfaces.

SIGSAM Bulletin 32(1):11–17, 1998.
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Monodromy to Decompose Solution Components

Given: a system f(x) = 0; and W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

Wanted: partition of Z so that all points in a subset of Z

lie on the same irreducible factor.

Example: does f(x, y) = xy − 1 = 0 factor?

Consider H(x, y, θ) =







xy − 1 = 0
x+ y = 4eiθ

for θ ∈ [0, 2π].

For θ = 0, we start with two real solutions. When θ > 0, the

solutions turn complex, real again at θ = π, then complex until at

θ = 2π. Back at θ = 2π, we have again two real solutions, but their

order is permuted ⇒ irreducible.

26
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Connecting Witness Points

1. For two sets of hyperplanes K and L, and a random γ ∈ C

H(x, t,K, L, γ) =







f(x) = 0

γK(x)(1− t) + L(x)t = 0

We start paths at t = 0 and end at t = 1.

2. For α ∈ C, trace the paths defined by H(x, t,K, L, α) = 0.

For β ∈ C, trace the paths defined by H(x, t, L,K, β) = 0.

Compare start points of first path tracking with end points of

second path tracking. Points which are permuted belong to the

same irreducible factor.

3. Repeat the loop with other hyperplanes.

27
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Linear Traces – an example

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve







y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.
Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
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Linear Traces – example continued

f−1(0)
x0

s

y00

s

y01

s

y02

x1

s

y10

s

y11

s

y12

x2

s

y20

s

y21

s

y22

Use {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}
to find the linear trace t1(x) = c0 + c1x.

At {(x2, y20), (x2, y21), (x2, y22)}: c0 + c1x2 = y20 + y21 + y22?
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Validation of Breakup with Linear Trace

Do we have enough witness points on a factor?

• We may not have enough monodromy loops to connect all
witness points on the same irreducible component.

• For a k-dimensional solution component, it suffices to consider
a curve on the component cut out by k − 1 random
hyperplanes. The factorization of the curve tells the

decomposition of the solution component.

• We have enough witness points on the curve if the value at the
linear trace can predict the sum of one coordinate of all points

in the set.
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Application: Architecturally Singular Platforms

Special Griffis-Duffy type

• Base and endplate are equilateral triangles.

• Legs connect vertices to midpoints.
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Results of Husty and Karger

Self-motions of Griffis-Duffy type parallel manipulators. In Proc. 2000

IEEE Int. Conf. Robotics and Automation (CDROM), 2000.

The special Griffis-Duffy platforms move:

• Case 1: Plates not equal, legs not equal.
– Curve is degree 20 in Euler parameters.

– Curve is degree 40 in position.

• Case 2: Plates congruent, legs all equal.
– Factors are degrees (4+ 4)+ 6+ 2 = 16 in Euler parameters.

– Factors are degrees (8 + 8) + 12 + 4 = 32 in position.

Question: Can we confirm these results numerically?
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Components of Griffis-Duffy Platforms

Solution components by degree

Husty & Karger SVW

Euler Position Study Position

General Case

20 40 28 40

Legs equal, Plates equal

6 8

4 8 6 8

4 8 6 8

6 12 6 12

2 4 4 4

16 32 28 40
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Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!
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Griffis-Duffy Platforms: an Animation
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Future Directions

• development of methods
→ systems with parameters

→ irreducible decomposition over the real numbers

• a software platform
→ analogue to LAPACK for polynomial systems

• specialize to applications
→ impact on science and engineering
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