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Abstract

In order to compensate for the higher cost of double double and quad double arithmetic when
solving large polynomial systems, we investigate the application of NVIDIA Tesla C2050, K20C, and
K40 general purpose graphics processing units. As the dimension equals several thousands, the cost
to compute one QR decomposition is sufficiently large so that the achieved speedups also compensate
for the cost of data transfer of the evaluated polynomials and their derivatives. In cases where the
polynomial evaluation and differentiation is relatively inexpensive, we could thus afford to leave this
stage in the computation at the host.

Acceleration of our modified Gram-Schmidt method enables to solve linear systems in the least
squares sense in higher dimension and with greater accuracy. In particular, with acceleration it takes
less time to solve a system of dimension 4,096 in double double complex arithmetic than a system of
dimension 2,048 in double complex arithmetic without acceleration. On a polynomial system where
the cost of evaluation and differentiation grows linearly in the dimension with an accelerated Newton’s
method we obtain double digit speedups in double double complex arithmetic.
Key words and phrases. double double arithmetic, differentiation and evaluation, general purpose
graphics processing unit (GPU), Newton’s method, least squares, massively parallel algorithm, modified
Gram-Schmidt method, polynomial system, QR decomposition, quad double arithmetic, quality up.

1 Introduction

We investigate the application of general purpose graphics processing units (GPUs) to solving large systems
of polynomial equations with numerical methods. Because large systems not only lead to an increased
number of operations, but also to more accumulation of numerical roundoff errors and therefore to the
need to calculate in a precision that is higher than the common double precision. Motivated by the need of
higher numerical precision, we can formulate our goal more precisely. With masssively parallel algorithms
we aim to offset the extra cost of double double and quad double arithmetic [15, 23] and achieve quality
up [2], a project we started in [31].

In this paper we report on solving the restrictions imposed on the dimensions of the problems our
original implementation could solve. Our original massively parallel algorithms for evaluation and differ-
entiation of polynomials [32] and for the modified Gram-Schmidt method [33] were written with a fine
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granularity, making intensive use of the shared memory. The limitations on the capacity of the shared
memory led to restrictions on the dimensions on the problems we could solve. These problems worsened
for higher levels of precision, in contrast to the rising need for more precision in higher dimensions. While
working in relatively low dimensions, we could not afford much data transfer between host and device, so
that both the evaluation and differentiation stage and the solving on the linear system had to be executed
on the device.

The revised versions of our massive parallel algorithms utilize the global memory of the device to
store intermediate results between different kernel launches. Large vectors are chopped up in parts, read
into shared memory for processing. Since the processing can happen in parallel by many more blocks
of threads, the parallelism is increased, compensating for an increased access to global memory. For all
levels of precision we can solve linear systems of several thousands of equations and variables. As the
processing time for one QR decomposition in such large dimensions is already considerable, the evaluation
and differentation stage can be separated from the solving of a linear system. The higher arithmetical
cost of solving one linear system on the device compensates for the data transfer between the host and the
device. This implies that the host could do the evaluation and differentiation of the polynomial system.

Problem Statement. Our problem is to accelerate Newton’s method for large polynomial systems,
aiming to offset the overhead cost of double double and quad double complex arithmetic. We do not
make assumptions on the shape and structure of the polynomial systems. For accuracy and application to
overdetermined systems, we solve linear systems in the least squares sense, based on a QR decomposition
of the Jacobian matrix, which leads to the method of Gauss-Newton.

Related Work. As the QR decomposition is of fundamental importance in applied linear algebra many
parallel implementations have been investigated by many authors, see e.g. [1], [3]. A high performance
implementation of the QR algorithm on GPUs is described in [18]. In [6], the performance of CPU and
GPU implementations of the Gram-Schmidt were compared. A multicore QR factorization is compared
to a GPU implementation in [24]. GPU algorithms for approaches related to QR and Gram-Schmidt are
for lattice basis reduction [4] and singular value decomposition [9].

The application of extended precision to BLAS is described in [22], see [8] for least squares solutions.
The implementation of BLAS routines on GPUs in triple precision (double + single float) is discussed
in [27]. In [28], double double arithmetic is described under the section of error-free transformations. An
implementation of interval arithmetic on CUDA GPUs is presented in [7].

The other computationally intensive stage in the application of Newton’s method is the evaluation
and differentiation of the system. Parallel automatic differentiation techniques are described in [5], [12],
and [29].

Concerning the GPU acceleration of polynomial systems solving, we mention two recent works. A
subresultant method with a CUDA implementation of the FFT to solve systems of two variables is presented
in [25]. In [20], a CUDA implementation for an NVIDIA GPU of a multidimensional bisection algorithm
is discussed.

Our contributions. Our goal is to offset the cost of double double and quad double arithmetic in the
context of numerical algorithms for solving polynomial systems. Although we have pushed the dimensions
of the problems we consider into the thousands, we currently utilize only one CPU and one GPU. Because
our computations are geared towards extended precision arithmetic which carry a higher cost per operation,
we can afford a fine granularitiy in our parallel algorithms.

Our experiments show that GPU acceleration compensates for at least one level of precision: if we
can afford double arithmetic on one single core of a CPU, then we can afford double double arithmetic
with GPU acceleration. This result confirms that GPUs are well suited for well structured linear algebra
problems. For polynomial evaluation and differentiation applied in Newton’s method, for large enough
dimensions, the cost of solving in the least squares sense is sufficiently high enough to compensate for data
transfers so one could leave the polynomial evaluation and differentiation (which is often irregular) to a
multicore implementation, as multithreading is more flexible than GPU acceleration.
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Our results are described in the following four sections. First we explain our modifications to our
accelerated Gram-Schmidt method so we can handle linear systems with dimensions over one thousand.
Section three shows the computational results obtained when solving random complex linear systems
in the least squares sense, in double, double double, and quad double arithmetic. We then apply our
accelerated linear system solver in Newton’s method on a problem arising from the discretization of an
integral equation. In section five, we outline a new evaluation and differentation method to evaluate
products of variables in factored form, to overcome the regularity assumptions imposed by shared memory
limitations.

2 Orthogonalization and Delayed Normalization

Before describing our massively parallel algorithms for the modified Gram-Schmidt method [21], we for-
malize the notations. We typically compute with complex numbers and follow notations in [10] for the
complex conjugated inner product xHy. Pseudo code of the modified Gram-Schmidt orthogonalization
method is listed in Figure 1.

Input: A ∈ C
m×n.

Output: Q ∈ Cm×n, R ∈ Cn×n: QHQ = I,
R is upper triangular, and A = QR.

let ak be column k of A
for k from 1 to n do

rk,k :=
√

aH
k ak

qk := ak/rk,k, qk is column k of Q
for j from k + 1 to n do

rk,j := qH
k aj

aj := aj − rk,jqk

Figure 1: The modified Gram-Schmidt orthogonalization algorithm.

The modified Gram-Schmidt method computes the the QR decomposition of a matrix A, which allows
to solve the linear system Ax = b in the least squares sense, minimizing ||b − Ax||22. In the reduction of
Ax = b to an upper triangular system Rx = QHb, we do not compute QHb separately. As recommended
in [16, §19.3] for numerical stability the modified Gram-Schmidt method is applied to the matrix A
augmented with b:

[
A b

]
=

[
Q qn+1

]
[

R y

0 z

]

. (1)

Because qn+1 is orthogonal to the column space of Q: ||b− Ax||22 = ||Rx − y||22 + z2 and y = QHb.

The algorithm in Figure 1 starts with the computation of the complex conjugated inner product aH
k ak,

followed by the normalization qk := ak/rk,k, where rk,k :=
√

aH
k ak. For the inner product, we load the

components of an m-dimensional vector into shared memory. Denoting the number of components that
fit into the shared memory by K (its capacity), then let L = ⌈m/K⌉ be the number of rounds it takes to
compute

aH
k ak =

L−1∑

i=0

K−1∑

j=0

ak,i⋆K+jak,i⋆K+j , (2)

where the indexing of the components of a vector starts at zero and a denotes the complex conjugate of
a ∈ C. The value for K is typically a multiple of the warp size and equals the number of threads in a block.
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In (2), the index j is the index of the thread in a block, so the inner loop is performed simultaneously in
one step by all threads in the block. The outside loop on i is done in a sum reduction and takes log2(L)
steps. The computation of aH

k ak for an n-dimensional vector ak is reduced to m memory accesses, L steps

to make all partial sums

K−1∑

j=0

ak,i⋆K+jak,i⋆K+j , and then log2(L) steps for the outer sum.

For the reduction, we compute the inner product rk,j := qH
k aj of two m-vectors:

qk






qk,0

qk,1

...
qk,m−1








aj






aj,0

aj,1

...
aj,m−1








qH
k aj






q̄k,0 ⋆ aj,0

q̄k,1 ⋆ aj,1

...
q̄k,K−1 ⋆ aj,m−1








(3)

As we can keep K components of each vector in shared memory, thread t in a block computes q̄k,t ⋆aj,t.
If we may override qk, then 2m shared memory locations suffice, but we still need qk for aj := aj − rk,jqk.
In total we need 3m shared memory locations to perform the reductions. Similar to the inner product for
the norm of ak, the computation of qH

k aj is performed in L rounds, where L = ⌈3m/K⌉, for the capacity
K of shared memory.

The calculation of the inner products in L rounds is the first modification to our original massively
parallel Gram-Schmidt implementation. The second modification is the delay of the normalization. In the
next paragraph we explain the need for this delay.

In the reduction stage, the inner j-loop is executed by n− k blocks of threads. Every block of threads
performs the normalization of the k-th pivot column before proceeding to the reduction. The first block
writes the normalized vector into global memory, all other blocks write the reduced vectors into global
memory. In the new revised implementation, each vector is processed in several rounds and is read from
global memory into shared memory not only at the beginning of the calculations. For large dimensions,
not all blocks can be launched simultaneously. It may even be that the block that will reduce the last
column is not even scheduled for launching at a time when the first block has finished its writing of the
normalized ak into global memory.

As some block would load in (partially) normalized vectors in the reduction stage, we propose to delay
the normalization to the next iteration of the k-loop in the algorithm in Figure 1. At each iteration, the
first block writes the norm of the current pivot column to a location in global memory and normalizes the
previous pivot column, dividing every component of the previous pivot column by its norm stored in global
memory and writes then the normalized previous column into global memory. With delayed normalization,
the column qk is computed last and is only stored in step k + 1. At the very end of the algorithm, there
is one extra kernel launch for the normalization that leads to qn.

The application of shared memory to reduce global memory traffic is referred to as tiling [19, pages
108-109]. Our tiles consist of slices of one column as we assign one column to one block. If we want to
reduce the number of kernel launches, we could assign multiple (adjacent) columns to one block to make
proper tiles as submatrices of the original matrix.

The third modification concerns the back substitution to compute the least squares solution to Rx =
QHb. Limited by the capacities of shared memory in our previous implementation only one block of
threads performed the back substitution. For larger dimensions, denoting QHb by y, the computation of

rℓ,ℓxℓ = yℓ −
ℓ−1∑

j=0

rℓ,jxj = yℓ −
L−1∑

i=0

K−1∑

j=0

rℓ,i⋆K+j , (4)

where L = ⌈m/K⌉, for the capacity K of shared memory. The main difference with our previous imple-
mentation is that now L blocks can work simultaneously at the evaluation of various components of (4).
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The pivot block computes the actual components of the solution, while the other blocks compute the
reductions for components at the low indices and write the reductions of the right hand side vector into
global memory for processing in later stages. The first stage of the back substitution launches L blocks,
the next stage launches L−1 blocks, followed by L−2 blocks in the third stage, etc. So there are as many
stages as the value of L, each stage launching one fewer block as the previous stage.

3 Computational Results

In this section we describe results with our preliminary implementations. We first examine the potential
for speedup with acceleration on matrices with random complex numbers. For dimensions as large as 1024,
the solution of one linear system is sufficiently computationally intensive and the speedups are encouraging
enough that we could run Newton’s method on a benchmark problem where the cost of evaluation and
differentiation is linear in the dimension. We obtained good speedups (the results are very good for double
double complex arithmetic) when the host performs the evaluation and differentation and only the linear
algebra is accelerated by the device, as demonstrated in the next section.

3.1 hardware and software

Our main target platform is the NVIDIA Tesla K20C, which has 2496 cores with a clock speed of 706 MHz,
hosted by a Red Hat Enterprise Linux workstation of Microway, with Intel Xeon E5-2670 processors at
2.6 GHz. Our code was developed with version 4.4.7 of gcc and version 5.5 of the CUDA compiler.

Our other computer is an HP Z800 workstation with 3.47 GHz Intel Xeon X5690, running Red Hat
Enterprise Linux, hosting the NVIDIA Tesla C2050 has 448 cores at a clock speed of 1147 Mhz. The same
compilers where used on both computers.

We participated to the NVIDIA GPU Test Drive program of Microway and received access to a com-
puter with two 10-core Xeon E5-2680v2 2.8GHz CPUs and one NVIDIA Tesla Atlas GPU, running CentOs
Linux 6. The version of the gcc compiler is 4.4.6 and we used version 5.5 of the CUDA compiler.

The C++ code for the Gram-Schmidt method to run on the host is directly based on the pseudo code
and we did not perform any optimizations. Our speedups might decrease once compared to the performance
of the XBLAS [22] and in particular to [8]. Our C++ code served mainly to verify the correctness of our
GPU code. The code is available at github in the directory src/GPU/MGS2 of PHCpack.

3.2 solving random complex linear systems

The host generates an n-by-(n+1) matrix [A b] of complex random numbers, uniformly distributed on the
unit circle, generating random angles θ ∈ [0, 2π) and taking the tuple (cos(θ), sin(θ)) in standard double
precision as the real and imaginary parts of the complex numbers. In the serial runs, the host applies
the modified Gram-Schmidt method to compute a QR decomposition, followed by a back substitution to
solve the linear system defined by Ax = b. In the accelerated runs, the data is sent to the device for the
computation of the QR decomposition and the back substitution. On return, the matrices Q, R, and the
solution x are sent back from the device to the host. The wall clock time (listed as real in the tables below)
is used to compute the speedup of the accelerated runs.

Table 1 lists the timings (with real, user, and sys) obtained from the time command for the serial runs
on one CPU core. Times are expressed in minutes (m) and seconds (s). As the cost grows cubic in the
dimension n, observe that the time is multiplied by factor a bit over 8 when the dimension n is doubled.
Going from double to double double arithmetic carries an overhead factor of about 10, while the overhead
factor from double double to quad double arithmetic is closer to six. The higher than expected overhead
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Table 1: Timings of the modified Gram-Schmidt method on a random n-by-n+1 complex matrix, followed
by a back substitution done on one core of an Intel Xeon 2.60 Ghz processor in double (D), double double
(DD), and quad double complex arithmetic (QD).

p n real user sys
D 1024 39.872s 39.649s 0.028s

2048 5m23.402s 5m22.850s 0.075s
3072 18m19.975s 18m18.073s 0.289s
4096 43m18.139s 43m13.184s 0.328s
5120 83m59.885s 83m50.417s 0.464s

DD 1024 7m 1.064s 7m 0.199s 0.055s
2048 56m 2.627s 55m56.677s 0.586s
3072 189m22.950s 189m 4.729s 0.575s
4096 452m53.113s 452m12.340s 2.046s

QD 1024 41m 9.521s 41m 5.699s 0.092s
2048 329m 4.188s 328m35.558s 0.346s

factor ten could be due to internal memory constraints caused by the doubling of the occupied memory
when going from double to double double arithmetic. Figure 2 visualizes the data of Table 1.

Figure 2: Figure visualizing the data of Table 1. The plot shows that the following times are of the same
magnitude at 1024 in QD (41 min), 2048 in DD (56 min), and 4096 in DD (43 min).

Table 2 lists the accelerated times on the K20C for various block sizes (BS), the number of threads in a
block. As each streaming multiprocessor of the K20C has 192 cores, we observe an increase of performance
as the value for BS increases. The largest value for BS we could afford was 256, due to limitations of the
capacity of shared memory. Lower limits on the value for BS are determined by the maximal number of
rounds (the value for L in the previous section) which equals 32. So for 2048, we start our experiments
with BS equal to 64, as 2048 = 32× 64. The speedup are computed dividing the corresponding real times
of Table 1 by the values for real obtained by acceleration. Already on the solving of one linear system
(which includes times for the data transfers between host and device) we reach speedups higher than 20
for large enough values of BS. Figure 3 visualizes the data of Table 2.
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Table 2: Accelerating the Gram-Schmidt method by the K20C on a random complex n-by-(n + 1) matrix
followed by back substitution in double complex arithmetic. The block size BS (the number of threads in
one block) is increased by 32 up to the shared memory limit.

n BS real user sys speedup
1024 32 5.067s 3.138s 1.501s 7.87
1024 64 3.045s 1.747s 1.099s 13.09
1024 96 2.544s 1.434s 0.966s 15.67
1024 128 2.159s 1.116s 0.801s 18.47
1024 160 2.140s 1.083s 0.859s 18.63
1024 192 1.971s 1.039s 0.782s 20.23
1024 224 1.862s 0.874s 0.794s 21.41
1024 256 1.712s 0.807s 0.744s 23.29
2048 64 18.112s 10.892s 6.950s 17.86
2048 96 14.568s 8.866s 5.516s 22.20
2048 128 11.414s 6.841s 4.342s 28.33
2048 160 10.610s 6.335s 4.042s 30.48
2048 192 9.595s 5.717s 3.634s 33.71
2048 224 9.244s 5.530s 3.461s 34.99
2048 256 8.098s 4.768s 3.147s 39.94
3072 96 44.692s 26.928s 17.518s 24.61
3072 128 35.435s 21.003s 14.198s 31.04
3072 160 33.395s 19.848s 13.251s 32.94
3072 192 28.310s 17.109s 11.002s 38.85
3072 224 26.342s 15.780s 10.390s 41.76
3072 256 24.411s 14.616s 9.542s 45.06
4096 128 1m20.761s 47.926s 32.490s 32.17
4096 160 1m14.422s 44.555s 29.596s 34.91
4096 192 1m 6.437s 43.248s 22.877s 39.11
4096 224 1m 1.094s 39.699s 21.001s 42.53
4096 256 55.140s 32.937s 21.898s 47.12
5120 160 2m20.774s 1m20.936s 59.490s 35.80
5120 192 2m 4.366s 1m13.106s 50.782s 40.52
5120 224 1m53.530s 1m 7.168s 45.975s 44.39
5120 256 1m45.579s 1m 3.446s 41.842s 47.74

Table 3 lists timings for acceleration in double double and quad double arithmetic. For double double
arithmetic, the speedups are really great, most likely through to increased benefits of the access to global
memory which goes faster on the device than on the host. Similar as in double arithmetic, we notice
benefits from increasing the block size, although now the upper limits are for double double and quad
double arithmetic are respectively 128 and 64, due to constraints on the shared memory. Speedups are the
ratios between the wall clock times of Table 1 and the wall clock times of Table 3. The largest speedup
of 131.24 on a problem of dimension 3,072 in double double complex arithmetic reduces the time of more
than 3 hours (189m22.950s) down to less than 1.5 minutes (1m25s). For the largest dimension we can do
in double double complex arithmetic we do not have unaccelerated times. Speedups on solving one linear
system with quad double complex arithmetic are not so good, because the data transfer between host and
device is substantially larger. Figure 4 visualizes Table 3.

We end this section with a comparison with two other GPUs: the older C2050 and the newer K40.
Table 4 displays timings for the C2050. Although the CPU frequency of the host for the C2050 was scaled
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Figure 3: Figure visualizing the data of Table 2. The plot shows that larger block sizes are more beneficial
for larger dimensions.

to a fixed 2.66GHz (to be more in line with the host of the K20C), the speedups are based on the sys time.
Similar to the K20C, we observe improved performance for increased values of the block size (number of
threads in one block), but as the number of cores per streaming multiprocessor of the C2050 is only 32
and not 192 as on the K20C, we observe an increase in times as the block size goes past 128. That the
speedups for double double complex arithmetic are less than 1.0 is odd. Perhaps it could be that the
higher clock speed of the C2050 (1147MHz) versus that of the K20C (706MHz) may play an important
role for matrices of size 1,024.

We conducted a comparison with the new NVIDIA K40 runs, with timings displayed in Table 5. As
the clock speed of the host for the K40 is slightly higher (2.80Ghz instead of 2.60Ghz) than the host
for the K20C, the system time is used to measure the speedup of the K40 over the K20C. Unlike the
oddity observed with the C2050, the speedups obtained by the K40 over the K20C are consistent with the
theoretical peak performace of the K40.

Although the host of the K40 has a slightly higher clock speed (2.80GHz) than the host of the K20C
(2.60GHz), we recompute the highest speedup in Table 3, for dimension 4,096 in double double complex
arithmetic. The original time of 452m53.113s (more than 7.5 hours) is reduced to 2m39.031s, giving a
speedup factor of 170.87. As for correctness in solving large dimensional problems double double precision
may be the default precision, observe that solving a linear system in the least squares sense without
GPU acceleration already takes 7 minutes (see Table 1), in dimension 1,024, which is far less than the
accelerated times for dimension 4,096. With GPU acceleration we can solve much larger linear systems in
double double complex arithmetic.

4 Newton’s method

Given a system f(x) = 0, with x = (x1, x2, . . . , xn), we denote the matrix of all partial derivatives of f as
Jf . Given an initial approximation x0 for a solution of f(x) = 0, the application of one step in Newton’s
method happens in two stages:

1. Evaluate Jf and f at x0: A = Jf (x0) and b = −f(x0).

8



Table 3: Accelerating the Gram-Schmidt method by the K20C on an n-by-(n + 1) matrix, followed by
a back substitution, in double double (DD) and quad double complex arithmetic (QD) for various block
sizes BS.

p n BS real user sys speedup
DD 1024 32 11.846s 8.563s 3.050s 35.54

1024 64 6.608s 4.437s 1.967s 63.72
1024 96 5.359s 3.440s 1.665s 78.57
1024 128 4.270s 2.749s 1.320s 98.61
2048 64 44.798s 27.813s 16.720 75.06
2048 96 34.929s 21.765s 12.860s 96.27
2048 128 27.039s 16.838s 9.922s 124.36
3072 96 1m49.947s 1m 6.248s 43.375s 103.35
3072 128 1m26.581s 51.433s 34.724s 131.24
4096 128 3m21.074s 1m57.756s 1m22.789s 135.14

QD 1024 32 4m12.664s 3m22.920s 49.078s 9.77
1024 64 2m30.463s 1m53.848s 36.221s 16.41
2048 64 19m20.893s 11m48.509s 7m30.749s 17.01

Table 4: Accelerating the Gram-Schmidt method by the C2050, on an 1024-by-1024 matrix, followed by
a back substitution, in double (D), double double (DD) and quad double (QD) complex arithmetic for
various block sizes BS. Speedups are computing dividing the sys times in this table by those corresponding
sys times from Table 2 and Table 3.

p BS real user sys speedup
D 32 5.012s 2.654s 1.861s 1.24

64 3.494s 1.533s 1.451s 1.32
96 3.154s 1.501s 1.596s 1.65
128 2.902s 1.072s 1.247s 1.56
160 3.125s 1.229s 1.236s 1.44
192 3.126s 1.450s 1.427s 1.82
224 3.184s 1.534s 1.594s 2.01
256 3.029s 1.430s 1.542s 2.07

DD 32 10.866s 7.260s 3.468s 0.61
64 6.834s 4.042s 2.339s 0.74
96 6.259s 3.421s 2.128s 0.96
128 5.880s 3.543s 2.218s 0.95

QD 32 3m47.729s 2m58.814s 48.703s 0.99
64 2m34.034s 1m50.693s 41.865s 1.16

2. Solve the linear system A∆x = b and update x0 to x1 := x0 + ∆x.

Stating the stages explicitly as above we emphasize the separation between the two stages in solving general
polynomial systems where the shape and structure of the polynomials varies widely between almost linear
to sparse systems with high degree monomials, see for example the benchmark collection of PHCpack [30].
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Figure 4: Wall clock times at logarithmic scale from Table 1, Table 2, and Table 3. Observe that the
rightmost bar is shorter than fifth bar from the left: solving a linear system of dimension 4,096 with the
GPU takes less time than solving a linear system of dimension 2,048 on the CPU with double complex
arithmetic.

Table 5: Accelerating the Gram-Schmidt method by the K40, on an n-by-(n + 1) matrix, followed by a
back substitution, in double complex arithmetic (DD), block size 256, in double double complex arithmetic
(DD), block size 128, and quad double complex arithmetic (QD), block size 64. Speedups are computed
dividing the sys times of Table 2 and Table 3 by the sys times on the K40.

p n real user sys speedup
D 1024 1.303s 0.697s 0.496s 1.5

2048 6.673s 4.136s 2.428s 1.23
3072 20.342s 12.577s 7.628s 1.25
4096 46.284s 28.287s 17.823s 1.23
5120 1m29.107s 54.447s 34.407s 1.22

DD 1024 3.264s 2.206s 0.950s 1.39
2048 21.214s 13.458s 7.650s 1.30
3072 1m 8.450s 41.942s 26.285s 1.32
4096 2m39.031s 1m37.148s 1m 1.397s 1.35

QD 1024 2m 0.069s 1m32.061s 27.672s 1.31
2048 15m24.871s 9m44.882s 5m37.872s 1.33

4.1 The Chandrasekhar H-Equation

The system arises from the discretization of an integral equation. The problem was treated with Newton’s
method in [17] and added to a collection of benchmark problems in [26]. In [11], the system was studied
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with methods in computer algebra. We follow the formulation in [11]:

fi(H1, H2, . . . , Hn)

= 2nHi − cHi





n−1∑

j=0

i

i + j
Hj



 − 2n = 0,

i = 1, 2, . . . , n,

(5)

where c is some real nonzero constant, 0 < c ≤ 1. As we can write the equations for any dimension n,
observe that the cost of evaluating the polynomials remains linear in n. Also the cost of evaluating the
columns of the Jacobian matrix linear in n as only the diagonal elements contain n linear terms. The
off-diagonal elements of the Jacobian matrix consists of at most one linear term. As the evaluation and
differentiation cost for this problem is linear in n, this implies that the cost of one iteration of Newton’s
method is dominated by the cost for solving the linear system, which is cubic in n.

Although the total number of solutions grows as 2n, there is always one real solution with all its
components positive and relatively close to 1. Starting at Hi = 1 for all i leads to a quadratically
convergent Newton’s method. The value for the parameter c we used in our experiments is 33/64. As all
coefficients in the system and the solution are real, the complex arithmetic is superfluous. Nevertheless,
we expect the speedups to be the same if we would use only real arithmetic.

Although in our methodology, not taking advantage of the shape and structure of the polynomial
system, it does not seem possible to obtain correct results without the use of double double arithmetic,
it may very well be that the Jacobi matrix at the interesting solution is diagonally dominant and that
iterative methods in double arithmetic will do very well to solve this particular benchmark problem.

4.2 computational results

To run Newton’s method on this system, the experimental code is displayed in Figure 5.

for a number of iterations :
1. The host evaluates and differentiates the system

at the current approximation.
This result of the evaluation and differentiation
is stored in an n-by-(n + 1) matrix [A b],
with b = −f(H1, H2, . . . , Hn).
The first component of b is printed.

2. A∆x = b is solved in the least squares sense,
either entirely by the host; or
if accelerated, then

2.1 the matrix [A b] is transferred
from the host to the device;

2.2 the device does a QR decomposition on [A b]
and back substitution on the system R∆x = y;

2.3 the matrices Q, R, and the solution ∆x

are transferred from the device to the host.
3. The host performs the update x = x + ∆x

to compute the new approximation.
The first component of ∆x and x are printed.

Figure 5: Experimental setup to accelerate Newton’s method.
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In the runs, we observed that taking larger block sizes led to less accurate results, even to the extent
where runs in double arithmetic with dimension 1,024 did not lead to correct results. Even if the QR
decomposition may still be computed correctly, the back substitution stage incurs a large propagation of
round off, the first component of the solution is subject to all errors of the half a million computed numbers
in R. To be precise, for n = 1, 024, there are 524,800 (512 × (1024 + 1)) floating points numbers in R.
For the GPU acceleration, taking smaller block sizes results in taking subsums of sequences of smaller size
which leads to less roundoff propagation.

Table 6 lists results for runs in double double and quad double complex arithmetic when Newton’s
method is done entirely by the device. For dimension 1,024, first only the linear system solving was
accelerated, which led to wall clock times of 41.193s in double double complex arithmetic and 15m34.527s
in quad double complex arithmetic, leading to respective speedups of 62.18 and 16.30, matching very
closely the speedups of 63.72 and 16.41 in Table 3. Performing the entire Newton’s method on the device
did not do much for quad double complex arithmetic, but it did improve the speedups for double double
complex arithmetic: from 62.18 to 72.72 (for block size 64) and to 127.42 (for block size 128). When
running multiple stages of Newton’s method on the device, the speedups improve: 124.36 for solving one
linear system in dimension 2,048 in double double complex arithmetic becomes 136.92 when running six
iterations.

In Table 6, observe the quality up: it takes less than twice as long to run the accelerated Newton’s
method in quad double complex arithmetic than the unaccelerated run in double double complex arith-
metic.

Figure 6 visualizes the data in Table 6.

Table 6: Running six iterations of Newton’s method in complex double double arithmetic (DD) and quad
double arithmetic (QD), on one core of the host (CPU) and with GPU acceleration (GPU), with block
size equal to 128 (DD) and 64 (QD).

p n real user sys speedup
DD CPU 1024 42m41.480s 42m37.692s 0.038s

GPU 1024 20.102s 11.664s 8.236s 127.42
CPU 2048 341m47.998s 341m18.009s 0.362s
GPU 2048 2m29.770s 1m26.373s 1m03.014s 136.92

QD CPU 1024 253m51.126s 253m24.170s 4.802s
GPU 1024 15m11.362s 9m28.399s 5m41.532s 16.71
CPU 2048 2027m40.726s 2024m38.715s 3.055s
GPU 2048 110m51.042s 63m21.470s 47m21.105s 18.29

5 Factored Evaluation and Differentiation

In our preliminary implementation in [32] to evaluation and differentiate systems of multivariate polyno-
mials we imposed regularity assumptions. In particular, we expected a fixed number of variables with
nonzero exponent in each monomial. Our method considered the evaluation and differentiation of one
product of variables (the so-called Speelpenning example [14], although it should be attributed to Arthur
Sedgwick [13]) as one job to be executed in its entirety by each thread. In this section we describe a
method to remove this regularity assumption.

The main idea is to split a product of variables into factors. The size of each factor is such that all
variables participating in the factor fit into shared memory. In the example below we consider a product
of 16 variables and assume that the memory shared between all threads in a block equals 4, the size of
each factor. Separate threads evaluate and differentiate products of variables:
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Figure 6: Figure visualizing the data of Table 6. Observe the height of the rightmost bar. Accelerating
Newton’s method in quad double complex arithmetic in dimension 2048 takes less than running Newton’s
method without acceleration with double double arithmetic in the same dimension.

f0
︷ ︸︸ ︷
x0x1x2x3 ·

f1
︷ ︸︸ ︷
x4x5x6x7 ·

f2
︷ ︸︸ ︷
x8x9xAxB ·

f3
︷ ︸︸ ︷
xCxDxExF

x1x2x3 x5x6x7 x9xAxB xDxExF

x0x2x3 x4x6x7 x8xAxB xCxExF

x0x1x3 x4x5x7 x8x9xB xCxDxF

x0x1x2 x4x5x6 x8x9xA xCxDxE

(6)

Because a variable occurs in at most one factor, e.g.:
∂

∂x0

(f0f1f2f3) =
∂f0

∂x0

f1f2f3, the product rule

for derivatives does not apply and all threads in one block need to be concerned only with the values of
the variables that fit into their shared memory. Therefore, after the calculation of all derivatives of one
factor, the derivatives of the product of all factors need to be multiplied with the products of the other
factors in the second stage.

All derivatives in (6) of f0, f1, f2, and f3 are multiplied by respectively by f1f2f3, f0f2f3, f0f1f3, and
f0f1f2. So we run the same algorithm as in (6) with variables x0 = f0, x1 = f1, x2 = f2, and x3 = f3.

The algorithm to multiply each derivative of a factor with all other factors follows the same lines
as the original evaluation and differentiation of any product of variables. As the product of variables
increase in size, we run multiple recursive applications of the evaluation and differentiation of factors of
the product. The extra operations to combine the evaluated factors and the extra memory locations to
hold the intermediate results is directly linear in the number of factors.

6 Conclusions and Outlook

For polynomial systems of dimensions of 1,024 and higher, GPU acceleration reduces the time it takes
to solve a linear system in double double complex arithmetic from minutes to seconds and from hours to
minutes. On an example we showed that, if the cost of evaluation and differentiation grows linearly in
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the dimension, accelerating Newton’s method in double double complex arithmetic still gives significant
speedups, even if we apply the GPU acceleration only to the linear system solving. Polynomial systems of
higher complexity we can either evaluate and differentiation on multiple cores on the host, or also move
this stage to the device.
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