HIGHER-ORDER DEFLATION FOR POLYNOMIAL
SYSTEMS WITH ISOLATED SINGULAR SOLUTIONS
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Abstract. Given an approximation to a multiple isolated solution of a system of
polynomial equations, we provided a symbolic-numeric deflation algorithm to restore
the quadratic convergence of Newton’s method. Using first-order derivatives of the
polynomials in the system, our first-order deflation method creates an augmented system
that has the multiple isolated solution of the original system as a regular solution.

In this paper we consider two approaches to computing the “multiplicity structure”
at a singular isolated solution. An idea coming from one of them gives rise to our new
higher-order deflation method. Using higher-order partial derivatives of the original
polynomials, the new algorithm reduces the multiplicity faster than our first method for
systems which require several first-order deflation steps. In particular: the number of
higher-order deflation steps is bounded by the number of variables.

Key words. Deflation, isolated singular solutions, Newton’s method, multiplicity,
polynomial systems, reconditioning, symbolic-numeric computations.
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1. Introduction. This paper describes a numerical treatment of sin-
gular solutions of polynomial systems. A trivial example to consider would
be a single equation with a double root, f(x) = 2% = 0, or a cluster of two
very close roots, f(r) = 2% — &2 = 0, where 0 < ¢ < machine precision. In
both cases getting good approximate solutions with straightforward numer-
ical approaches such as Newton’s method is not easy. Instead of attempting
to solve the given equations we replace them with the system augmented
by the equation’s derivative, f(z) = (f(x), f'(x)) = 0. Note that this com-
pletely symbolic procedure leads to a system with exact regular roots in the
first case, whereas in the second case the system f(z) = 0 is inconsistent.
However, a numerical solver applied to the latter converges to a regular
solution of a close-by system.

In general setting, given a square or overdetermined system of equa-
tions in many variables with a multiple isolated solution (a cluster of so-
lutions) our approach deflates the multiplicity of the solution (cluster) by
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applying a certain numerical procedure. From the point of view of nu-
merical analysis it may be called a reconditioning method: to recondition
means to reformulate a problem so its condition number improves.

Our deflation method was first presented at [29], and then described in
greater detail in [16]. In [15], a directed acyclic graph of Jacobian matrices
was introduced for an efficient implementation. We will call the deflation
of [16] the first-order deflation to distinguish it from the higher-order de-
flation proposed in this paper.

On input we consider clusters of approximate zeroes of systems F(x) =
(f1(zx), fa(x), ..., fn(x)) = 0 of N equations in n unknowns x € C". We
assume the cluster approximates an isolated solution x* of F(x) = 0.
Therefore, N > n. As x* is a singular solution, the Jacobian matrix of
F(x), denoted by A(x), is singular at «*. In particular, we have r =
Rank(A(z*)) < n.

In case r = n — 1, consider a nonzero vector A in the kernel of A(x*),
which we denote by A € ker(A(x*)), then the equations

gi@) =Y ) g{i‘), i=1,2,...,N, (1.1)
i=1 J

vanish at &*, because r = Rank(A(x*)) < n. For r < n — 1, our algorithm
reduces to the corank-1 case, replacing A(x) by A(x)B, where B is a
random complex N-by-(r + 1) matrix. For the uniqueness A € ker(A(z*)),
we add a linear scaling equation (h,A) = 1 (using a random complex
(r 4+ 1)-vector h). and consider the augmented system

F(x) =0
G(x,A\) =< A(x)BA = 0 (1.2)
(h,A) = L

Let us denote by pp(x*) the multiplicity of * as a solution of the system
F(x) = 0. In [16] we proved that there is a A" such that pg(z*, A*) <
wr(x*). Therefore, our first-order deflation algorithm takes at most m —
1 stages to determine x* as a regular root of an augmented polynomial
system.

Related work. The literature on Newton’s method is vast. As stated
in [5], Lyapunov-Schmidt reduction (see also [1], [8, §6.2], [13], [17], and [19,
§6.1]) stands at the beginning of every mathematical treatment of singu-
larities. We found the inspiration to develop a symbolic-numeric deflation
algorithm in [22]. The symbolic deflation procedure of [14] restores the
quadratic convergence of Newton’s method with a complexity proportional
to the square of the multiplicity of the root. Smale’s a-theory is applied
to clusters of zeroes of analytic functions in [6] and to special multivariate
cases in [7]. Algorithms to compute the multiplicity are presented in [2],
[3], and [26].
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Outline of this paper. We sketch the link between two different objects
describing what we call the multiplicity structure of an isolated singular
solution: the dual space of differential functionals and the initial ideal with
respect to a local monomial order, both associated to the ideal generated
by the polynomials in the system in the polynomial ring.

Next, following the latter method, we explain how to compute a basis
of the dual space, first, following the ideas of Dayton and Zeng [3], then
using the approach of Stetter and Thallinger [26]. We provide a formal
symbolic algorithm for each approach, respectively called the DZ and ST
algorithms; the ingredients of the algorithms do not go beyond linear al-
gebra. Moreover, we present an algorithm to determine the order of the
deflation.

The formalism developed for DZ and ST algorithms found a natural
continuation in the higher-order deflation method that generalizes and ex-
tends the first-order deflation in [16]. For the systems that require more
than one deflation step by our first algorithm, the new deflation algorithm
is capable of completing the deflation in fewer steps.

Acknowledgements. The first author would like to thank RICAM/RISC
for supporting his visit during the special semester on Grébner bases. The
first two authors received support from the IMA during the thematic year
on Applications of Algebraic Geometry. We also thank the referees for
useful comments.

2. Statement of the main theorem & algorithms. The matrices
AW (x) we introduce below coincide for d = 1 with the Jacobian matrix
of a polynomial system. They are generalizations of the Jacobian matrix,
built along the same construction as the matrices used in the computation
of the multiplicity by Dayton and Zeng in [3].

DEFINITION 2.1. The deflation matriz A (x) of a polynomial system
F = (f1, fa, ..., fn) of N equations in n unknowns x = (z1,x2,...,Z,) is
a matrix with elements in C[z]. The rows of A(®(x) are indexed by z f;,
where |a| < d and j = 1,2,...,N. The columns are indexed by partial

differential operators 8° = %, where 3 # 0 and |G] < d. The
<P 0al

element at row x* f; and column 9% of A(D(x) is

1B (x> f;)
B . (p®f.) — Z JIJ
0 (af) = T2, (2.1)
A () has N, rows and N, columns, N, = N- ("+z_1) and N, = (":d) —1.
The number d will be referred to as the order of deflation

EXAMPLE 1 (Second-order deflation matrix). Consider a system of 3
equations in 2 variables F' = (f1, f2, f3) = 0, where f; = 2, fo = 27 — 23,
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and f3 = x3. Then the second-order deflation matrix A?)(x) of F is

ANTON LEYKIN, JAN VERSCHELDE, and AILING ZHAO

Oz, Oz, 8%1 Oz, O, 5%2
fi [ 2x 0 2 0 0
fo 2z —3x3 2 0 —6x2
fs 0 43 0 0 1223
r1f1 | 323 0 61 0 0
x1 fa 3z?  —3x173 614 3x3 —6x122 (2.2)
1 f3 x5 4123 0 0 0
Tof1 | 2x120 x? 214 21 0
Tofs | 2w1me —4a3 219 211 —1222
T2 f3 0 515 0 0 2023

Notice that A (zx) (or the Jacobian matrix of F) is contained in the first
three rows and two columns of A (z).

DEFINITION 2.2. Let * be an isolated singular solution of the system
F(z) = 0 and let d be the order of the deflation. Take a nonzero N,-vector
(Ag)a=0, |8<a in the kernel of A (x*). Tt corresponds to what we call a
deflation operator — a linear differential operator with constant coefficients
As

Q= Y M0 eclal (2.3)

B#0, |B|<d

We use @ to define N, new equations
gia(®)=Q (z°f;) =0, j=1,2,....N, |o] <d. (2.4)

When we consider A\g as indeterminate, we write g;o(®) as g;a(x, A).
In that case, for m = corank (A(¥)(z*)), we define m additional linear
equations:

hieA) = bephg—1=0, k=12...,m, (2.5)
B

where the coefficients by g are randomly chosen complex numbers. Then
we define

fil®) = 0, j=1,2,...,N;
GD(x,A) ={ gjalx,\) = 0, j=1,2,....N, |a] < d; (2.6)
(A = 0, k=1,2,...,m.

With (2.6) we end Definition 2.2.

Now we are ready to state our main theorem.

THEOREM 2.1. Let * € C" be an isolated solution of F(x) = 0.
Consider the system GD(x,X) = 0 as in (2.6). For a generic choice
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of coefficients by g, there exists a unique \* € CNe such that the system
G (2, \) has an isolated solution at (x*,X*). Moreover, the multiplicity
of (x*,A") in G(x,\) = 0 is strictly less than the multiplicity of x* in
F(x)=0.

REMARK 2.1. Assuming coefficients (by ) are chosen from a com-
plex parameter space, the exceptional set of (by g) that do not produce the
conclusion of the Theorem 2.1 is contained in a (closed proper) algebraic
subset of this parameter space. By genericity we mean staying away from
this exceptional set, which is accomplished by choosing random numbers.

To determine the order d, we propose Algorithm 2.2. This d is then
used in Algorithm 2.3.

ALGORITHM 2.2. d = MinOrderForCorankDrop(F, xg, )

Input: F is a finite set of polynomials;
' =~ x*, x* € F~1(0), an isolated multiple solution;
€ > 0, a threshold parameter.
Output: d is the minimal number such that the system G(®
given via a generic deflation operator @ of order d has
corank of the Jacobian at «* lower than corank A(z*).
take a generic vector v = (71, ...,7,) € ker A(x);
let H(t) = F(x° +t) = F(aY +yt,..., 20 +yut);
d :=min{ a | € < coeflicient of t* in H(t) } — 1.

See the proof of correctness of this algorithm in the exact setting, i.e.,
x* = x¥ and £ = 0, in the end of subsection 5.2.

AvLGoriTHM 2.3. DY F = Deflate(F,d, )

Input: F is a finite set of polynomials in C[x];

d is the order of deflation;

x¥ ~ x*, x* € F~1(0), an isolated multiple solution;
Output: D@F is a finite set of polynomials in C[z, A]

such that there is A* with ppw p(x*, A*) < pp(x*).
determine the numerical corank m of A(¥(z°);
return D F := G(D(z, ) as in (2.6).

Ideally, it would be nice to have a method to predict a number d
such that the system can be regularized by a single deflation of order d.
However, at this point, the iterative application of Algorithms 2.2 and 2.3 is
the best practical strategy; This gives a procedure that deflates the system
completely in at most the number of variables steps, as opposed to the
ordinary deflation that may take more steps.

3. Multiplicity structure. This section relates two different ways to
obtain the multiplicity of an isolated solution, constructing its multiplicity
structure. Note that by a “multiplicity structure” — a term without a precise
mathematical definition — we mean any structure which provides more local
information about the singular solution in addition to its multiplicity. In
this section we mention two different approaches to describe this so-called
multiplicity structure.
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ExAMPLE 2 (Running example 1). Consider the system

3 =0
F(x) = 2222 =0 (3.1)
zl + 232y = 0.

The system F'(x) = 0 has only one isolated solution at (0,0) of high mul-
tiplicity. Below we will show how to compute the multiplicity of (0,0). ©

3.1. Standard bases. Assume 0 € C" is an isolated solution of the
system F(x) = 0. Let I = (F) C R = C[z] be the ideal generated by the
polynomials in the system. Given a local monomial order >, the initial
ideal in> (1) = {in>(f) | f € I} C R describes the multiplicity structure of
0 by means of standard monomials, i.e.: monomials that are not contained
in in> (7). A graphical representation of a monomial ideal is a monomial
staircase.

EXAMPLE 3 (Initial ideals with respect to a local order). Consider
the system (3.1) of Example 2.

Figure 1 shows the staircases for initial ideals of I = (F) w.r.t. two
local weight orders >,. Computer algebra systems Macaulay 2 [9] and
Singular [12] can be used for these kind of computations, see also [10, 11]
for theory, in particular, on Mora’s tangent cone algorithm [20].

In the example the leading monomials at the corners of the staircase
come from the elements of the corresponding standard basis. For the weight
vector w = (—1, —2) the original generators give such a basis (initial terms
underlined). For w = (=2, —1) one more polynomial is needed. o

w=(-1,-2) w=(-2,-1)

2,2
L1235

D O
p O O O

/AR

Db O O

4
7+ aﬁxg

C/UUU N A

Fic. 1. Two monomial staircases for two different monomial orderings applied to
the same system. The full circles represent the generators of the initial ideals. The
multiplicity is the number of standard monomials, represented by the empty circles
under the staircase.

3.2. Dual space of differential functionals. Another approach at
the multiplicity structure is described in detail in [25, 27]; see also [21].
Using duality to define the multiplicity goes back to Macaulay [18]. In this
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approach, differential functionals are denoted by

1 olalf
Aa(f) - al! .. an! ’ Ox1 ... 0xon v—0 : (32)
Observe that
1, =
Aala?) = { 0 el (3.3)

We then define the local dual space of differential functionals Dg[I] as
Do[I] = {L € Span{A, | a € Z%,}| L(f) =0 for all f € I}, (3.4)

ExXAMPLE 4 (Dual space of running example 1). For the ideal defined
by the polynomials in the system (3.1) we have
Do[I] = Span{ A(4,0) - A(3,1)7 A(3,0)7 A(2,1), A(1,2);
A0y, Ay Do.2), Aaoy Do), Do) -

(3.5)

Notice that here the basis of the dual space is chosen in such a way that
the (underlined) leading terms with respect to the weight order >4 1) cor-
respond to the monomials under the staircase in Example 2 for the order
>(—2,—1)- We will show that it is not a coincidence later in this section. ¢

3.3. Dual bases versus standard bases. Since both local dual
bases and initial ideals w.r.t. local orders describe the same, there exists a
natural correspondence between the two.

Let > be an order on the nonnegative integer lattice Z2, that defines a
local monomial order and let > be the opposite of >: i.e. a > 3 < a < .
(Note: > defines a global monomial order.)

For a linear differential functional L = > c,A, define the support:
supp(L) = {a € ZZ%, | ca # 0}. For the dual space, supp(Do[l]) =
ULeDo[I] supp(L).

Using the order = we can talk about the leading or initial term of L:
let iny (L) be the maximal element of supp(L) with respect to >. Define
the indtial support of the dual space as in- (Do [I]) = {in-(L) | L € Do[I]}.
The initial support is obviously contained in the support, in our running
example the containment is proper:

in(g,1)(Doll]) = {(i,4) | i+5 <3} U{(4,0)}
CH{(@@,) [i4+7<3U{(4,0)U(3,1)} = supp(Do[[]).

THEOREM 3.1. The number of elements in the initial support equals
the dimension of the dual space, therefore, is the multiplicity. Moreover,
with the above assumptions on the orders > and =, the standard monomials
w.r.t. the local order > are {x® | a € iny-(Dol[I])}.
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Proof. Pick Lg € Dg[I], 8 € in=(Dg[I]) such that in-(Lg) = 3. One can
easily show that {Lg} is a basis of Dgl[I].

Take a monomial ® € in>(I), then there is f € I such that z® =
in>(f). Next, take any linear differential functional L with in-(L) = «a.
Since the orders > and > are opposite, there are no similar terms in the
tail of L and the tail of f, therefore, L(f) = iny (L)(in>(f)) # 0.

It follows that, L ¢ Dg[I], which proves that the set of standard
monomials is contained in the initial support of Dg[I]. They are equal
since they both determine the dimension. d

Consider the ring of linear differential operators D = C[8] with the
natural action (denoted by “”) on polynomial ring R = C[z].

LeMMA 3.1. Let Q € C[0] and f € C[z] such that in-(Q) = in>(f)
(in Z3,).

Then in>(Q - f) = in>(f) — inx-(Q) € Z%,.

4. Computing the multiplicity structure. Let the ideal I be gen-
erated by fi, f2,..., fn. Let D((,d) [I] the part of Dg[I] containing func-
tionals of order at most d. We would like to have a criterion that for the
differential functional L of degree at most d guarantees L € D(()d) [1].

Below we describe two such criteria referred to as closedness condi-
tions; their names are arranged to match the corresponding computational
techniques of Dayton-Zeng [3] and Stetter-Thallinger [26] that we will de-
scribe later respectively as the DZ and ST algorithms.

A functional L = 3" ¢, A, with ¢, € C of order d belongs to the dual
space Dgl[I] if and only if

e (DZ-closedness) L(g- f;) =0 for all i = 1,2,..., N and polyno-
mials g(x) of degree at most d — 1.

e (ST-closedness) L(f;) = 0 for all ¢ and o;(L) € Dgl[l] for all
j=1,2,...,n, where g; : Do[I| — Dgl[I] is a linear map such that

0, if Q5 = O7

7j(Ba) = { Ay—c;, otherwise. (4.1)
The basic idea of both DZ and ST algorithms is the same: build up

a basis of Dg incrementally by computing D(()d) for d =1,2,... using the

corresponding closedness condition. The computation stops when D(()d) =

D{ Y,

EXAMPLE 5 (Running example 2). Consider the system in Clzy, z2]
given by three polynomials f; = x122, fo = 22 — 23, and f3 = x5, which
has only one isolated root at (0,0). o

4.1. The Dayton-Zeng algorithm. We shall outline only a sum-
mary of this approach, see [3] for details.

If 0 is a solution of the system, then D(()O) = Span{Ap}.
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At step d > 0, we compute D(()d). Let the functional

L= Z Calq (4.2)
|| <d, a0

belong to the dual space D(()d). Then the vector of coefficients ¢, is in the

kernel of the following matrix M (Dd% with NB(d — 1) rows and B(d) — 1
columns, where B(d) = (":d)
of degree at most d.

The rows of M(Dd% are labelled with z®f;, where |a| < d and j =

1,2,..., N. The columns correspond to Ag, where 3 # 0, |G| < d.

is the number of monomials in n variables

[The entry of Mgg in row 2 f; and column Ag| = Ag(z“f;). (4.3)

At the step d = 3 we have the following M(Di%

[ Aco Awy [ Aeo Aay Dos | Aso Aen Aaz Aws
fi 0 0 0 0 0 0 0
fo
f3
x1 f1
x1 f2
z1f3
22 f1
22 f2
z2f3
i

|
—

oo O O

O O O ol o

o

OO O OO O oo o
OO O OO0 O oo o
OO O OO O oo
[=lielelaoNeloNel ool
(=) Kl e Mol e M) Nl

(=l eleNel =l l=le]
=il oo al S [=R=]

o|lo o~ o
I
—

Note that the last block of 9 rows is entirely zero.
Analyzing the kernel of this matrix one sees that there are no func-
tionals of degree 3 in the dual space, which is then is equal to Déz) 1]

Do[I] = Span{A 0,0, A1,0), A0,1), A2,0) + A(0,2) }- (4.4)

4.2. The Stetter-Thallinger algorithm. The matrix MédT) is a ma-
trix consisting of n + 1 blocks stacked on top of each other:
e The top block contains the first N rows of M (Dd%;
e Foreveryj=1,2,...,n,let Sj(-d) be the (B(d—1)—1) x (B(d)—1)-
matrix for the linear map

o; : DY/ Span{A¢} — D/ Span{Ag} (4.5)

w.r.t. standard bases of functionals.
The block M é(iT_l)Sj represents the closedness condition for the
“anti-derivation” ;.
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Let us go through the steps of the algorithm for the Example 5.
Step 1. At the beginning we have MST) equal to

[ Awo Apa

fi 0 0
f2 0 0
/3 0 0

Therefore, Dél) = Span{A(o,o)7 A(1,0)7 A(0,1)}‘-
Step 2. Since MST)S](-Q) = 0 for all j, the matrix MéQT) is

[Aco Apy [Aeo Auy Awps
Al o 0 0 1 0
Ll oo 0 1 0o -1
oo 0 0 0 0

0 0 0 0 0

Therefore, Di = Span{A (0,0, A(1.0), A0,1), A2,0) + A02)}-
We can “prune” the matrix M éQT) by row-reducing it to the following
matrix with the same kernel:
~2 |0 0 0
Mgr = 0 0 1

Step 3. Compute S§3) that represents o;:
[ Aco Apy [ Aeo Aoy Aps | Aso Aen Az Aps

Aao | O 0 1 0 0 0 0 0 0
Apy | 0 0 0 1 0 0 0 0 0
Ao || 0 0 0 0 0 1 0 0 0
Aay | 0 0 0 0o 0 0 1 0 0
Ao || 0 0 0 0 0 0 0 1 0

The matrix 553) can be defined similarly.
The top block of the matrix M é?)T) is

| Aco Awy [ Ao Aun Ape | Aso Aen Aaz) Aes)

fi 0 0 0 1 0 0 0 0 0
fa 0 0 1 0 -1 0 0 0 0
f3 0 0 0 0 0 0 0 0 0

Despite the last 4 columns being 0, there are no new elements of order
3 in the dual space due to the other two blocks: MéQT)SF’):

| Awo Awn [Aco Aan Aws | Ase Aen Aus) Aes)
0 0 ‘ 0 0 0 ‘ 0 1 0 0

1 f1

z1f2 0 0 0 0 0 1 0 -1 0
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and MézT)Sé‘g):
| Ao Aoy [ Ao Aan A | Aso Aen Aaz) Aes)

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 -1

22 f1
x2 fo

Comparing to DZ algorithm, in step 3, we managed to avoid the com-
putation of 9 last zero rows of M g % in this particular example. We now
also see how its 4 last nonzero rows show up in the “closedness condition”
blocks of Mg%

5. Proofs and algorithmic details. In this section we justify the
main theorems stated before and give details about the algorithms pre-
sented above.

5.1. First-order deflation. In the beginning of this section we sum-
marize our deflation method introduced in [16]. Not only it is done for the
convenience of the reader, but also for our own convenience as we build a
higher-order deflation algorithm later in this section following the pattern
established for the ordinary deflation.

One deflation step with fixed A. The basic idea of the method is
relatively simple. Let A € C™ be a nonzero vector in ker(A(x*)), then the
equations

gi(w):A.Vfi(m):Z/\jagf), i=1,2,... N (5.1)
i=1 J

have x* as a solution. Moreover,
THEOREM 5.1. The augmented system

G(z)=(f1,.--, fn,01,- -, gn)(x) =0 (5.2)

of equations in Clx] is a deflation of the original system F(x) = 0 at z*,
i.e. G(x*) =0 and the multiplicity of the solution x* is lower in the new
system.

The original proof of this statement in [16] uses the notion of a standard
basis of the ideal I = (f1, fo, ..., fn) in the polynomial ring R = C[x]| w.r.t.
a local order; this tool of computational commutative algebra can be used
to obtain the multiplicity of *, which is defined as the C-dimension of the
local quotient ring Rq /R, 1.

On the other hand it is in correspondence with another way of looking
at multiplicities — dual spaces of local functionals, so the proof can be
written in that language as well (see Section 3).

One deflation step with indeterminate A. Without loss of generality,
we may assume corank (A(xz*)) = 1; consult [16] to see how the general
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case is reduced to this. Consider N + 1 additional polynomials in C[x, A]
in 2n variables:

gi(@A) = A- Vfilw Zxafl Ji=12...,N) (53)

= biXi— 1, (5.4)
j=1

where the coefficients b; are random complex numbers.
THEOREM 5.2. Let * € C™ be an isolated solution of F(x) =0 (in
Cla]).

For a generic choice of coefficients b;, j = 1,2,...,n, there exists a
unique A\ € C™ such that the system
Glx,N)=(f1,-.-, [N, g1, -, gN, h)(®,A) =0 (5.5)

of equations in Clz, A] has an isolated solution at (x*, X*).

The multiplicity of (x*, X*) in G(x, \) = 0 is lower than that of * in
F(z)=0.
Proof. Follows from Proposition 3.4 in [16]. 0

Theorem 5.2 provides a recipe for the deflation algorithm: one simply
needs to keep deflating until the solution of the augmented system corre-
sponding to «* becomes regular.

As a corollary we have that the number of deflations needed to make
a singular isolated solution &* regular is less than the multiplicity of x*.

2. Higher-order deflation with fixed multipliers. We use the
deflation operator to define an augmented system.
THEOREM 5.3. Let f1, fo,..., fn form a standard basis of I w.r.t. the
order opposite to =. Consider the system G?(z) = 0 in C[x], where

_ f]( ) (':LQ?"'?N)
G(d)(‘”){ gm(% Gl N jal<d (5.6)

as in Definition 2.2.
(a) The system GD(x) = 0 is a deflation of the original system F(x) = 0
at x*.
(b) Let I = (F) and J = (GY) be the ideals generated by polynomials of
the systems and = be a global monomial order on ZY%. Then the
following relation holds for initial supports

in-(Do[J]) C {5 = fBe | B € n-(Doll])} N 2%, (5.7)

where Bq is the mazimal element of the set ins (Do[I])N{F : |B| <

d}.
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Proof. Let X € ker(A(2*)) be the vector used above to construct the
operator ) € C[8] and the equations g; (x) = 0.

First of all, gjo(2*) = (Q - (£*fj))|a==+ = 0 provided |a| < d (by
construction), hence, z* is a solution to G(¥(zx) = 0.

To prove (a), it remains to show that the multiplicity drops, which
follows from part (b) that is treated in the rest of this proof.

We shall assume for simplicity that * = 0. This is done without the
loss of generality using a linear change of coordinates:  — x + «*. It is
important to note that in the new coordinates polynomials @ - (z® f;(x +
x*)) generate the same ideal as the polynomials @ - ((x — x*)* f;(x + x*)).

Recall that I = (F) = (f1, fa,..., fn), let J = (G¥) O T be the
ideal generated by the polynomials in the augmented system. The reversed
containment holds for the dual spaces: Dgo[I] D Do[J].

There is a 1-to-1 correspondence between linear differential operators
and linear differential functionals:

D 507 Y AsBlAs (5.8)

Let ¢ : C[@] — Do and 7 : Do — C[8] be the corresponding bijections.

As in Section 3 we order terms Ag with >, a global monomial order.
Notice that since the choice of coefficients of the operator @ is generic,
Bo = ins(Q) = inx- (¢(Q)) is the maximal element of the set iny- (Do[I]) N
{818 < d}.

Next, we use the condition that f; form a standard basis. Since the
corners of the staircase correspond to the initial terms of f;, by Lemma
3.1 the staircase created with the corners at in>(Q - (z®f;)) bounds the
set {8 — Bq | B € inx(Do[I])} N Z%,,, which, therefore, contains the initial
support of Dg[J]. - O

COROLLARY 5.1. If there exist a local monomial order > such that
the minimal (standard) monomial in the set {x® ¢ in>(I) : |o| < d} is also
minimal in the set of all standard monomials, i.e., {x ¢ in>(I)}, then x*
is a regular solution of G\ (x) = 0.

Theorem 5.3 and Corollary 5.1 are of purely theoretical nature, since
the assumption of exactness in their statements can not be relaxed.

Ideally, we would like to be able to drop the assumption of the original
polynomials forming a standard basis, since computing such a basis is a
complex symbolic task, whereas our interest lies in the further numerical-
ization of the approach. The following weaker statement works around this
restriction.

Assuming x* = 0, let supp(F) = Uj:1;27~~~7N supp(f;)-

PROPOSITION 5.1. Assume A(0) = 0. Let dy = min{|a| : z* €
supp(£7)}.

Then, in the notation of Theorem 5.3, for a generic deflating operator
Q the system GD(xz) = 0, where, d < dy is a deflation of the original
system F(x) = 0 at the origin.
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Moreover, if d = dy — 1 then the Jacobian of G (0) is not equal to

zero.
Proof. Fix a local monomial ordering that respects the degree. With
the above assumptions, the initial ideal in((F')) will contain monomials of
degree at least dy. On the other hand, for a generic choice of the deflating
operator () the support supp(G(d)) would contain a monomial of degree
less than dy. Therefore, there exists a monomial in in((supp(G(®))) that
is not in in((F)), hence, G(¥ is a deflation.

If d = |dp| — 1, then there is such monomial of degree 1, which means
that the Jacobian of the augmented system is nonzero. d

REMARK 5.1. Note that if the deflation order d is as in Proposition
5.1, then it suffices to take an arbitrary homogeneous deflation operator of
order d.

Next we explain the practical value of Proposition 5.1. Let K =
ker A(0) and ¢ = corank A(0) = dim K. Without a loss of generality we
may assume that K is the subspace of C™ has {z1,...,2.} as coordinates.

Now consider the system F'(x1,...,z.) = F(21,...,2.,0,...,0). This
system has an isolated solution at the origin, and Proposition 5.1 is appli-
cable, since the Jacobian is zero. Moreover, if we take the deflation of order
d = dy — 1 of the original system F', with dy coming from the Proposition,
the corank of the Jacobian the augmented system G4 is guaranteed to be
lower than that of A(0).

Let us go back to the general setup: an arbitrary isolated solution
x*, the Jacobian A(x*) with a proper kernel K, etc. Algorithm 2.2 is
a practical algorithm that can be executed numerically knowing only an
approximation to x*.
Proof. [Proof of correctness of Algorithm 2.2 for z° = z* and ¢ = 0.] We
can get to the special setting of Proposition 5.1 in two steps. First, apply
an affine transformation that takes &* to the origin and ker A(x*) to the
subspace K of C™ spanned by the first ¢ = corank A(z*) standard basis
vectors. Second, make a new system F'(x1,...,x.) = 0 by substituting the
z; = 0in F for 7 > c.

Let v/ = (74,..-,7%) € K be the image of the generic vector v under
the linear part of the affine transform. Then H(t) = F'(yit,...,vit).

Since ' is generic, the lowest degree dy of the monomial in supp(F”)
is equal to min{a | t* € supp H(t)}. According to the Proposition 5.1 and
the discussion that followed, d = dg — 1 is the minimal order of deflation
that will reduce the rank of the system. d

REMARK 5.2. In view of Remark 5.1 it would be enough to use any
homogeneous deflation operator of order d:

Q=Y M0’ eCla, (5.9)
|8]=d

such that the vector A of its coefficients is in the kernel of the truncated
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deflation matriz, which contains only the rows corresponding to the original
polynomials F' and only the columns labelled with 97 with |3| = d.

5.3. Indeterminate multipliers. Asin Section 5.1, we now consider
indeterminate Ag. Now we should think of the differential operator L(X) €
C[A, 0] and of additional equations g; o (x, A) € C[x, A] as depending on A.
Proof of Theorem 2.1. Picking m = corank (A(®(x*)) generic linear equa-
tions hj guarantees that for x = x* the solution for A exists and is unique;
therefore, the first part of the statement is proved.

The argument for the drop in the multiplicity is similar to that of the
proof of Theorem 5.2. d

6. Computational experiments. We have implemented our new
deflation methods in PHCpack [28] and Maple. Below we report on two
examples.

One crucial decision in the deflation algorithm is the determination of
the numerical rank, for which we may use SVD or QR in the rank-revealing
algorithms. Both SVD and QR are numerically stable, As shown by the
result from [4, page 118] for the problem of solving an overdetermined
linear system Ax = b. The solution obtained by QR or SVD minimizes the
residual ||(A + §A)Z — (b + 6b)||2 where the relative errors have the same
magnitude as the machine precision e:

1ALk 186 _ .
X( ATz [oll2 ) = 0(e). (6.1)

To decide to tolerance for the numerical rank, we combine a fixed value —
relative to the working precision — with the search for that value of ¢ where
the maximal jump o;41/0; in the singular values o;’s occurs.

6.1. A first example. To find initial approximations for the roots of
the system

3+ x23 =0
F(x) = 173 + 23 =0 (6.2)
2229 + 1125 =0

we must first make the system “square”, i.e.: having as many equations
as unknowns, so we may apply the homotopies available in PHCpack [28].
Using the embedding technique of [23] (see also [24]), we add one slack
variable z to each equation of the system, multiplied by random complex
constants i, 2, and vs:

34+ 1173+ 712=0
E(x,2) = 175 + 23 + 722 =0 (6.3)
2339 + 11735 + 732 = 0.
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Observe that the solutions of the original system F'(x) = 0 occur as solu-
tions of the embedded system E(x, z) = 0 with slack variable z = 0. At the
end points of the solution paths defined by a homotopy to solve E(x, z) = 0,
we find nine zeroes close to the origin. These nine approximate zeroes are
the input to our deflation algorithm.

The application of our first deflation algorithm in [16] requires two
stages. The Jacobian matrix of F(x) = 0 has rank zero at (0,0). After
the first deflation with one multiplier, the rank of the Jacobian matrix of
the augmented system G(x, A1) = 0 equals one, so the second deflation
step uses two multipliers. After the second deflation step, the Jacobian
matrix has full rank, and (0,0) has then become a regular solution. New-
ton’s method on the final system then converges again quadratically and
the solution can be approximated efficiently with great accuracy. Once the
precise location of a multiple root is known, we are interested in its mul-
tiplicity. The algorithm of [3] reveals that the multiplicity of the isolated
root equals seven.

Starting at a root of low accuracy, at a distance of 107° from the
exact root, the numerical implementation of Algorithm 2.2 predicts two as
the order, using 10™* as the tolerance for the vanishing of the coefficients
in the univariate interpolating polynomial. The Jacobian matrix of the
augmented system G(? has full rank so that a couple of iterations suffice
to compute the root very accurately.

6.2. A larger example. The following system is copied from [14]:

221 + 222 + 232 + 223 + 23 —1=0
F(=) = (1 + 32 =23 — 1) — 23 = 0 (6.4)
(243 + 223 + 1023 + 522 + 5)3 — 100027 = 0.

Counted with multiplicities, the system has 54 isolated solutions. We focus
on the solution (0,0, —1) which occurs with multiplicity 18.

Although Algorithm 1 suggests that the first-order deflation would
already lower the corank of the system, we would like to search for a ho-
mogeneous deflation operator @) of order two.

To this end we construct the (truncated) deflation matrix A(x1, z2, 23)
which corresponds to {97, 0102, 0103, 03, 0205, 03 }, having 12 rows and only
6 columns.

The vectors (1,6,8,—3,0,4)T and (0,3,3,—1,1,2)7 span the kernel of
A(0,0,—1). The operator corresponding to the former,

Q = 0% + 60,05 + 80,05 — 302 + 403, (6.5)
regularizes the system, since the equations

Q . (xlfl) = 8r1 + 24x, + 16x3 + 16 = 0
Q . (J)Qfl) 241‘1 — 241‘2
Q - (J)gfl) = 321 + 16xz3 + 16 = 0.

I
)
—
IS
D
S~—



HIGHER-ORDER DEFLATION FOR POLYNOMIAL SYSTEMS 17

augmented to the original equations, give a system with the full-rank Ja-
cobian matrix at (0,0, —1).

7. Conclusion. In this paper we have described two methods of com-
puting the multiplicity structure at isolated solutions of polynomial sys-
tems. We have developed a higher-order deflation algorithm that reduces
the multiplicity faster than the first-order deflation in [16].

In our opinion, one of the main benefits of the higher order deflation for
the numerical algebraic geometry algorithms is the possibility to regularize
the system in a single step. For that one has to determine the minimal
order of such a deflation or, even better, construct a sparse ansatz for its
deflation operator. Predicting these numerically could be a very challenging
task, which should be explored in the future.
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