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imagine a meeting with your boss ...

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 2 / 18



what you want to say is

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 3 / 18



you better have some backup

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.
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Complexity and Cost
of problems and algorithms

Complexity measures the hardness of a problem.

Cost is a property of an algorithm to solve a problem.

Efficiency concerns use of
space for intermediate and final results;

time for arithmetic, communication, management.
Depending on the type of inputs, one distinguishes between
worst case, best case, and average case.

Importance for software development:
1 complexity coincides with cost of the best algorithm;
2 cost analysis of programs reveals its bottleneck.

Applications: public key cryptography; tuning algorithms.
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The Big O Notation
to measure complexity

Let n be the dimension of our problem.

Definition (Big O)
A function f (n) is O(g(n)) (we say: f is of order g)
if there exists a positive constant c (independent of n): f (n) ≤ cg(n),
for sufficiently large n.

Big O defines the order of complexity, some examples:
f is O(log(n)): logarithmic in n
f is O(n): linear in n
f is O(n log(n)): quasilinear in n
f is O(n2): quadratic in n
f is O(2n): exponential in n
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Complexity of Sorting
independent of algorithm used

Minimal number of comparisons to sort n numbers?
#permutations equals n! = n · (n − 1) · · · 2 · 1.
A sort computes a permutation to order the list.�� ��1 < 2
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S(n) = minimal #comparisons. From the tree: n! ≤ 2S(n).
Stirling: n! ≈

√
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en ⇒ O(log(n!)) = O(n log(n)).
A lower bound on sorting complexity: O(n log(n)).
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Complexity Classes

We distinguish three big classes of complexity:
P polynomial time

The problem can be solved in O(f (n)), where f (n) is a polynomial in n.
Example: evaluate a polynomial.

NP nondeterministic polynomial time
A solution to the problem can be verified in polynomial time.
Example: root finding.

#P counting problems
How many solutions does a problem have?
Example: determine number of roots to nonlinear system.
Two problems belong to the same class if we can transform
input/output in polynomial time.

How to win $1,000,000: is P = NP?
The halting problem is: Given a program and a finite input,
decide whether it will terminate. undecidable!
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Counting Flops
floating-point operations

A flop is short for floating-point operation.

In scientific computation, the cost analysis is often measured in flops.

An application of Object Oriented Programming:

1 An object FlopFloat stores a float and flops.
2 Value of flops = cost of a number as object data attribute.
3 Overloading arithmetical operators we count the flops.

Recall the lecture on operator overloading.

We use FlopFloats to count the flops to evaluate a polynomial of
degree d with random coefficients.
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Performance Analysis
measuring efficiency and optimality

In our context, an algorithm = a Python program.

Static cost analysis (analyze source code):
1 count the number of arithmetical operations;
2 estimate the size of the used memory;
3 identify resource intensive tasks.

Dynamic cost analysis (time the program):
1 measure time at the command line, ex: sort is O(n log(n))?
2 use module time, ex: cost of exception handling
3 use timeit, ex: importing module or functions
4 use os.times(), ex: cost of handling files
5 profiling code, ex: are list comprehensions efficient?

Pushing a program to its limits is a stress test.
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examples of cost considerations

Consider the following questions:

Is the time to sort a list of n elements O(n log(n))?

Does try-except cost more than if-else?

Importing the module or from module import a function?

What is the cost of working with files?

Is shorter code more efficient?
Why we care about list comprehensions.
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Exercises

1 Examine the space complexity to sort n numbers.
Express the memory use as a function of n.

2 If a (double) float occupies 8 bytes, how much space is needed to
sort one million numbers? Find out how much internal memory
your computer has. What is the largest list you could sort?

3 Modify the class flopfloats.py so that multiplications and
divisions are counted separately from the additions and
subtractions.

4 Run floppoly for degrees d ranging from 2 to 20
and record the flops.

5 Look at the code for floppoly and find a formula for its cost in
function of d .
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More Exercises

6 To handle division by zero, we could have used the name of the
proper exception in the handler.
Modify time_iftry.py using the proper name for the exception
and compare the timings.
Does knowing the name of the exception help?

7 Use timeit in the script time_iftry.py.
8 Make time_filework more efficient by avoiding the use of files.

Compare between storing all numbers in a list and merging the
loop which generates the numbers with the loop which computes
the maximum.
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