
Outline

1 Complexity and Cost
measuring complexity: big o
complexity classes
counting flops: floating-point operations

2 Cost of Algorithms
timing Python programs
examples of cost considerations

MCS 260 Lecture 31
Introduction to Computer Science

Jan Verschelde, 19 July 2023

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 1 / 18

imagine a meeting with your boss ...

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 2 / 18

what you want to say is

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 3 / 18

you better have some backup

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 4 / 18

Complexity and Cost
of problems and algorithms

Complexity measures the hardness of a problem.

Cost is a property of an algorithm to solve a problem.

Efficiency concerns use of
space for intermediate and final results;

time for arithmetic, communication, management.
Depending on the type of inputs, one distinguishes between
worst case, best case, and average case.

Importance for software development:
1 complexity coincides with cost of the best algorithm;
2 cost analysis of programs reveals its bottleneck.

Applications: public key cryptography; tuning algorithms.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 5 / 18

complexity and cost
timing Python code

1 Complexity and Cost
measuring complexity: big o
complexity classes
counting flops: floating-point operations

2 Cost of Algorithms
timing Python programs
examples of cost considerations

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 6 / 18

The Big O Notation
to measure complexity

Let n be the dimension of our problem.

Definition (Big O)
A function f (n) is O(g(n)) (we say: f is of order g)
if there exists a positive constant c (independent of n): f (n) ≤ cg(n),
for sufficiently large n.

Big O defines the order of complexity, some examples:
f is O(log(n)): logarithmic in n
f is O(n): linear in n
f is O(n log(n)): quasilinear in n
f is O(n2): quadratic in n
f is O(2n): exponential in n

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 7 / 18

Complexity of Sorting
independent of algorithm used

Minimal number of comparisons to sort n numbers?
#permutations equals n! = n · (n − 1) · · · 2 · 1.
A sort computes a permutation to order the list.�� ��1 < 2

������ ��2 < 3

�
123

@�� ��1 < 3

�
132

@
312

XXXX�� ��2 < 3

@
321

��� ��1 < 3

�
213

@
231

S(n) = minimal #comparisons. From the tree: n! ≤ 2S(n).
Stirling: n! ≈

√
2πn nn

en ⇒ O(log(n!)) = O(n log(n)).
A lower bound on sorting complexity: O(n log(n)).

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 8 / 18

complexity and cost
timing Python code

1 Complexity and Cost
measuring complexity: big o
complexity classes
counting flops: floating-point operations

2 Cost of Algorithms
timing Python programs
examples of cost considerations

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 9 / 18

Complexity Classes

We distinguish three big classes of complexity:
P polynomial time

The problem can be solved in O(f (n)), where f (n) is a polynomial in n.
Example: evaluate a polynomial.

NP nondeterministic polynomial time
A solution to the problem can be verified in polynomial time.
Example: root finding.

#P counting problems
How many solutions does a problem have?
Example: determine number of roots to nonlinear system.
Two problems belong to the same class if we can transform
input/output in polynomial time.

How to win $1,000,000: is P = NP?
The halting problem is: Given a program and a finite input,
decide whether it will terminate. undecidable!

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 10 / 18

complexity and cost
timing Python code

1 Complexity and Cost
measuring complexity: big o
complexity classes
counting flops: floating-point operations

2 Cost of Algorithms
timing Python programs
examples of cost considerations

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 11 / 18

Counting Flops
floating-point operations

A flop is short for floating-point operation.

In scientific computation, the cost analysis is often measured in flops.

An application of Object Oriented Programming:

1 An object FlopFloat stores a float and flops.
2 Value of flops = cost of a number as object data attribute.
3 Overloading arithmetical operators we count the flops.

Recall the lecture on operator overloading.

We use FlopFloats to count the flops to evaluate a polynomial of
degree d with random coefficients.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 12 / 18

complexity and cost
timing Python code

1 Complexity and Cost
measuring complexity: big o
complexity classes
counting flops: floating-point operations

2 Cost of Algorithms
timing Python programs
examples of cost considerations

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 13 / 18

Performance Analysis
measuring efficiency and optimality

In our context, an algorithm = a Python program.

Static cost analysis (analyze source code):
1 count the number of arithmetical operations;
2 estimate the size of the used memory;
3 identify resource intensive tasks.

Dynamic cost analysis (time the program):
1 measure time at the command line, ex: sort is O(n log(n))?
2 use module time, ex: cost of exception handling
3 use timeit, ex: importing module or functions
4 use os.times(), ex: cost of handling files
5 profiling code, ex: are list comprehensions efficient?

Pushing a program to its limits is a stress test.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 14 / 18

complexity and cost
timing Python code

1 Complexity and Cost
measuring complexity: big o
complexity classes
counting flops: floating-point operations

2 Cost of Algorithms
timing Python programs
examples of cost considerations

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 15 / 18

examples of cost considerations

Consider the following questions:

Is the time to sort a list of n elements O(n log(n))?

Does try-except cost more than if-else?

Importing the module or from module import a function?

What is the cost of working with files?

Is shorter code more efficient?
Why we care about list comprehensions.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 16 / 18

Exercises

1 Examine the space complexity to sort n numbers.
Express the memory use as a function of n.

2 If a (double) float occupies 8 bytes, how much space is needed to
sort one million numbers? Find out how much internal memory
your computer has. What is the largest list you could sort?

3 Modify the class flopfloats.py so that multiplications and
divisions are counted separately from the additions and
subtractions.

4 Run floppoly for degrees d ranging from 2 to 20
and record the flops.

5 Look at the code for floppoly and find a formula for its cost in
function of d .

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 17 / 18

More Exercises

6 To handle division by zero, we could have used the name of the
proper exception in the handler.
Modify time_iftry.py using the proper name for the exception
and compare the timings.
Does knowing the name of the exception help?

7 Use timeit in the script time_iftry.py.
8 Make time_filework more efficient by avoiding the use of files.

Compare between storing all numbers in a list and merging the
loop which generates the numbers with the loop which computes
the maximum.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 18 / 18

	Complexity and Cost
	measuring complexity: big o
	complexity classes
	counting flops: floating-point operations

	Cost of Algorithms
	timing Python programs
	examples of cost considerations

