Outline

0 Complexity and Cost
@ measuring complexity: big o
@ complexity classes
@ counting flops: floating-point operations

9 Cost of Algorithms
@ timing Python programs
@ examples of cost considerations

MCS 260 Lecture 31
Introduction to Computer Science
Jan Verschelde, 19 July 2023

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 1/18

imagine a meeting with your boss ...

o

““I can’t find an efficient algorithm, I guess I'm just too dumb.”

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 2/18

what you want to say is

“I can’t find an efficient algorithm, because no such algorithm is possible!”
From Computers and intractability. A Guide to the Theory of

NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 3/18

you better have some backup

AL L L

"r

] can’t find an efficient algorithm, but neither can all these famous people.”

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 4/18

Complexity and Cost

of problems and algorithms

Complexity measures the hardness of a problem.
Cost is a property of an algorithm to solve a problem.

Efficiency concerns use of
space for intermediate and final results;
time for arithmetic, communication, management.

Depending on the type of inputs, one distinguishes between
worst case, best case, and average case.
Importance for software development:

@ complexity coincides with cost of the best algorithm;

@ cost analysis of programs reveals its bottleneck.
Applications: public key cryptography; tuning algorithms.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023

5/18

complexity and cost
timing Python code

0 Complexity and Cost

@ measuring complexity: big o

Intro to Computer Science (MCS 260)

complexity and cost

The Big O Notation

to measure complexity

Let n be the dimension of our problem.

Definition (Big O)
A function 7(n) is O(g(n)) (we say: f is of order g)

if there exists a positive constant ¢ (independent of n): f(n) < cg(n),
for sufficiently large n.

Big O defines the order of complexity, some examples:
@ fis O(log(n)): logarithmic in n
@ fis O(n): linearin n
@ fis O(nlog(n)): quasilinear in n
e fis O(n?): quadratic in n
@ fis O(2"): exponential in n

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 7/18

Complexity of Sorting

independent of algorithm used
Minimal number of comparisons to sort n numbers?

#permutations equals n' =n-(n—1)---2-1.
A sort computes a permutation to order the list.

1<2

2<3 2<3

123 (1<3 1<3) 321

132 312 213 231

S(n) = minimal #comparisons From the tree: n! < 25(").
Stirling: n! =~ v2rnZ; = O(log(n')) = O(nlog(n)).
A lower bound on sortmg complexity: O(nlog(n)).

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 8/18

complexity and cost
timing Python code

0 Complexity and Cost

@ complexity classes

Intro to Computer Science (MCS 260)

complexity and cost

Complexity Classes

We distinguish three big classes of complexity:
P polynomial time

The problem can be solved in O(f(n)), where f(n) is a polynomial in n.

Example: evaluate a polynomial.
NP nondeterministic polynomial time
A solution to the problem can be verified in polynomial time.
Example: root finding.
#P counting problems
How many solutions does a problem have?
Example: determine number of roots to nonlinear system.

Two problems belong to the same class if we can transform
input/output in polynomial time.

How to win $1,000,000: is P = NP?

The halting problem is: Given a program and a finite input,
decide whether it will terminate. undecidable!

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023

10/18

complexity and cost
timing Python code

0 Complexity and Cost

@ counting flops: floating-point operations

Intro to Computer Science (MCS 260) complexity and cost

L-31 19 July 2023

11/18

Counting Flops

floating-point operations

A flop is short for floating-point operation.
In scientific computation, the cost analysis is often measured in flops.
An application of Object Oriented Programming:

@ Anobject FlopFloat stores a float and flops.
© Value of f1ops = cost of a number as object data attribute.
© Overloading arithmetical operators we count the flops.

Recall the lecture on operator overloading.

We use FlopFloats to count the flops to evaluate a polynomial of
degree d with random coefficients.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 12/18

complexity and cost
timing Python code

9 Cost of Algorithms

@ timing Python programs

Intro to Computer Science (MCS 260)

complexity and cost

Performance Analysis

measuring efficiency and optimality

In our context, an algorithm = a Python program.

Static cost analysis (analyze source code):
@ count the number of arithmetical operations;
@ estimate the size of the used memory;
© identify resource intensive tasks.

Dynamic cost analysis (time the program):
@ measure time at the command line, ex: sortis O(nlog(n))?
© use module time, ex: cost of exception handling
© use timeit, ex: importing module or functions
© use os.times (), ex: cost of handling files
@ profiling code, ex: are list comprehensions efficient?

Pushing a program to its limits is a stress test.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023

14/18

complexity and cost
timing Python code

e Cost of Algorithms

@ examples of cost considerations

Intro to Computer Science (MCS 260)

complexity and cost

examples of cost considerations

Consider the following questions:
@ Is the time to sort a list of n elements O(nlog(n))?
@ Does try-except cost more than if-else?
@ Importing the module or from module import a function?
@ What is the cost of working with files?

@ |s shorter code more efficient?
Why we care about list comprehensions.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 16/18

Exercises

@ Examine the space complexity to sort n numbers.
Express the memory use as a function of n.

@ If a (double) float occupies 8 bytes, how much space is needed to
sort one million numbers? Find out how much internal memory
your computer has. What is the largest list you could sort?

© Modify the class flopfloats.py so that multiplications and
divisions are counted separately from the additions and
subtractions.

© Run floppoly for degrees d ranging from 2 to 20
and record the flops.

@ Look at the code for f1oppoly and find a formula for its cost in
function of d.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 17/18

More Exercises

© To handle division by zero, we could have used the name of the
proper exception in the handler.
Modify time_iftry.py using the proper name for the exception
and compare the timings.
Does knowing the name of the exception help?

@ Use timeit inthe script time_iftry.py.

O Make time_filework more efficient by avoiding the use of files.
Compare between storing all numbers in a list and merging the
loop which generates the numbers with the loop which computes
the maximum.

Intro to Computer Science (MCS 260) complexity and cost L-31 19 July 2023 18/18

	Complexity and Cost
	measuring complexity: big o
	complexity classes
	counting flops: floating-point operations

	Cost of Algorithms
	timing Python programs
	examples of cost considerations

