Outline

- transistors
- Iogic gates

2 Dictionaries and Conditional Statements

- intrinsic operations
- writing numbers in words

MCS 260 Lecture 9 Introduction to Computer Science Jan Verschelde, 23 June 2023

1/17

Digital Systems

introduction to electronic circuits

A computer is a synchronous binary digital system.

digital: all information is discrete (not continuous)

binary: only zero and one are used a <u>bi</u>nary digi<u>t</u> is a bit

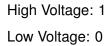
synchronous: functioning is ruled by the system clock Basic elements to represent bits are switches that can be open (1) or closed (0).

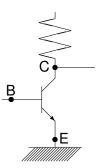
Transistors are electronic circuits to represent bits.

< □ > < 同 > < 回 > < 回 > .

logic gates

2 Dictionaries and Conditional Statements

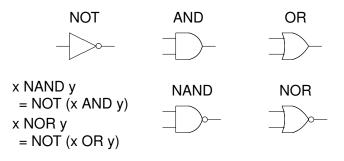

- intrinsic operations
- writing numbers in words


Transistors

electronic circuits to represent bits

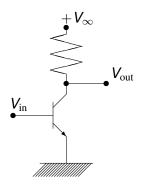
Transistors have three connections to the outside:

- base: input voltage
- 2 collector: output voltage
- emittor: to ground



Dictionaries and Conditional Statements

- intrinsic operations
- writing numbers in words



Logic gates are circuits that correspond to logic operators. Representations of NOT, AND, OR:

A NOT Gate

as realized by a transistor

Input Voltage V_{in} $V_{in} = low$ \Rightarrow switch is open $\Rightarrow V_{out} = +V_{\infty}$ $V_{in} = high$ \Rightarrow switch is closed $\Rightarrow V_{out} = low$

A NOT gate converts a low input voltage to high and a high input voltage to low.

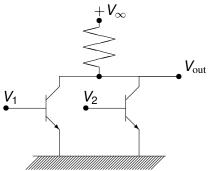
A NAND Gate

two transistors in series

Input voltages V_1 and V_2

If either V_1 or V_2 is low: \Rightarrow switch is open

$$\Rightarrow V_{\rm out} = + V_{\infty}$$


If both V_1 and V_2 are high: \Rightarrow switch is closed $\Rightarrow V_1 = low$

$$\Rightarrow V_{out} = low$$

-

A NOR Gate

two transistors in parallel

Input voltages V_1 and V_2 if either V_1 or V_2 is high \Rightarrow closed switch \Rightarrow $V_{out} = low$; if both V_1 or V_2 are low \Rightarrow open switch \Rightarrow $V_{out} = +V_{\infty}$.

Intro to Computer Science (MCS 260)

Iogic gates

2 Dictionaries and Conditional Statements

- intrinsic operations
- writing numbers in words

12 N A 12

intrinsic operations

Intrinsic operations are those operations that belong to the standard library.

For every variable x, the function

id(x) returns the address of x,

type(x) returns the type of x.

Python has dynamic typing and garbage collection.

To see the operations defined on strings, do

>>> dir(str)

which returns the list of operations defined on strings. Then,

```
>>> help(str.split)
```

shows the help on the split() method on strings.

11/17

Iogic gates

Dictionaries and Conditional Statements

- intrinsic operations
- writing numbers in words

モトイモト

writing numbers in words - applying dictionaries

On a check, the amount is spelled out in words.

Program specification: Input: *n*, a natural number < 1000. Output: a string expressing *n* in words.

An example session with write_numbers.py:

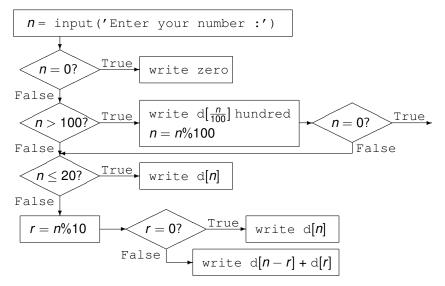
\$ python write_numbers.py give a natural number : 125 125 is one hundred and twenty five

イロト イポト イラト イラト

the dictionary: numbers spelled out in English

For all $n \leq 20$ and multiples of 10:

The dictionary lookup DIC[n] handles special cases.


idea for the algorithm

case analysis

We distinguish three cases:

- the trivial case: n = 0 This is the only case we write zero.
- Iarge numbers n ≥ 100 We start writing n/100 hundred and then continue with
- the rest: 0 < n < 100:</p>
 - for $n \le 20$: dictionary lookup
 - 2 for 20 < n < 100: compute r = n%10 and n r

flowchart for write_numbers.py

Intro to Computer Science (MCS 260)

Exercises

- Draw all transistors needed to realize an OR gate and describe its working.
- Construct truth tables for
 - (A OR B) OR NOT (A AND B)
 - ONOT ((A OR C) OR B) OR (A AND C)
- Oraw the logic gates to realize the expressions of the previous exercise.
- Let secret be a secret number the user of a Python program has to guess. Give code for prompting the user for a guess and for printing feedback.
- S Write a script to use dbm to store the dictionary d to spell numbers out in English.
- Modify the write_numbers.py program so it uses the dbm file made in the previous exercise.