Outline

- Files and Databases
 - mass storage
 - hash functions
- 2 Dictionaries
 - logical key values
 - managing persistent data with dbm files

MCS 260 Lecture 7 Introduction to Computer Science Jan Verschelde, 21 June 2023

- Files and Databases
 - mass storage
 - hash functions

- 2 Dictionaries
 - logical key values
 - managing persistent data with dbm files

Mass Storage

tapes and disks

Mass storage means

- the data is persistent (opposed to volatile),
- large capacity: giga or terabytes.

We distinguish modes of access:

- sequential access: one must rewind tapes,
- direct access: read disks from any position.

We distinguish two different technologies:

- a magnetic file covers disk and tape surfaces,
- optical disc media rely on laser technology.

Compression software also helps increasing capacity.

Units to measure Capacity

1 byte = 8 bits. Large quantities are expressed in thousands (kilo), millions (mega), billions (giga), and trillions (tera).

units	value	value in full
Kb = kilobyte	$2^{10}\approx 10^3$	1,024
Mb = megabyte	$2^{20}\approx 10^6$	1,048,576
Gb = gigabyte	$2^{30}\approx 10^9$	1,073,741,824
Tb = terabyte	$2^{40}\approx 10^{12}$	1,099,511,627,776

The same prefixes (kilo, mega, giga, tera) measure clock speed of the CPU, or other frequencies.

1 hertz = 1 cycle per second 1 kilohertz = 2^{10} cycles per second 1 megahertz = 2^{20} cycles per second 1 gigahertz = 2^{30} cycles per second

I/O Disk Operations

reading from and writing information to disk

- A disk consists of a number of horizontal platters, covered by a magnetic coating to store data on a surface.
- A buffer in main memory holds the entire block of data prior to writing to or after being read from disk.
- The seek is the movement of the heads towards the required track. The seek time is the time of a seek.
- The latency time is the time to wait for the required sector to pass beneath the read/write head.
 On average this equals half the rotation time.
- Time needed for one i/o operation:

$$t_{i/o} = t_{seek} + t_{latency} + t_{transfer}$$
.

Flash Drives

the memory stick

Commonly used portable mass storage.

- connect to USB port, which powers the drive USB = Universal Serial Bus
- capacity goes to several gigabytes
- sends electronic signals to chambers of silicon dioxide, altering the characteristics of small electronic circuits

Advantages and disadvantages:

- unlike a disk drive, there is no movement, sometimes faster than optical disks
- can sustain only limited number of write and erase cycles

Linux commands to check disk usage: df, du.

- Files and Databases
 - mass storage
 - hash functions

- 2 Dictionaries
 - logical key values
 - managing persistent data with dbm files

File Organization

records and blocks

Data is organized in *logical records*.
 One record in a phone book has three fields:

name address	phone number
--------------	--------------

- An input/output block can contain several records.
- The usage factor is

```
# bytes allocated to logical records

# bytes of physical blocks on file
```

Sequential File Organization

order records sequentially

- Every record on file has a key.
 Records are stored in order of the keys.
 In a phone book, with names sorted alphabetically, the key is usually the name.
- Binary search is an efficient way to search through a sorted data collection.
- The main problem with sequential file organization is the insertion of new elements.
- Solutions to this problems are
 - store changes in a separate file that is then periodically merged with the main file
 - leave free blocks between records
 - 3 use an overflow zone to insert new data

Hash-based File Organization

order of records is computed

Keys are generated by a *hash algorithm*.

The hash algorithm uses a *hash function*, mapping logical key values (for example, a name) to a physical address (or a position).

Goal: even distribution of keys over addresses.

- Mapping names into addresses via combinations of the ASCII codes of the characters in the strings representing the names is a first step.
- Advantage: fast access, reduced search speed.
 Disadvantage: two different key values could be mapped to the same address.

- Files and Databases
 - mass storage
 - hash functions

- Dictionaries
 - logical key values
 - managing persistent data with dbm files

Dictionaries

- With lists or tuples, the index must be a number.
 - But very often, we list data using names as indices. Consider for example a telephone directory.
- A dictionary is an unordered set of key:value pairs, where value can be of any data type.
 The type of key must admit an ordering, it must be "hashable".

For example, list summer sales according to month:

```
>>> sales = { 'jun':123, 'aug':342, 'sep' : 212 }
>>> sales
{'jun': 123, 'aug': 342, 'sep': 212}
>>> sales['aug']
342
```

- Files and Databases
 - mass storage
 - hash functions

- Dictionaries
 - logical key values
 - managing persistent data with dbm files

DBM File Operations

an overview

Python code	description
import dbm	load module dbm
<pre>f = dbm.open('n','c')</pre>	create or open dbm file with name n
f['key'] = 'value'	assign value for key
f.keys()	returns the keys
<pre>value = f['key']</pre>	load value for key
count = len(f)	number of entries stored
found = 'key' in f	see if entry for key
del f['key']	remove entry for key
f.close()	close dbm file

Typical use:

- every record in database has unique key,
- values are dictionaries, stored as strings.

Exercises

- Use a dictionary to record state capitols.
- Store the money exchange rates between dollar, euro, and yen in a dictionary and illustrate how to convert any sum of money.
- Make a dictionary I to store the antiderivation rules for common trigonometric functions, sin, cos, and tan.
- Define a dictionary that has as keys the name of the months and as values the number of the month. Use that dictionary to convert '21 June 2023' into '21/06/2023'. To insert the '0' for the '6', put 02.0f in the second part of the f-string.
- Use dbm for storing a mileage table.
- In Italian, the numerals are written as zero, uno, due, tre, etc. Setup a dictionary with the written numerals as keys and their corresponding values. Make a quiz prompting the user to give the corresponding value of a number written in Italian.