
Outline

1 Modular Design
programming in the large
software engineering

2 Good Design in Action
choosing between two designs
justifying the right choice

MCS 260 Lecture 23
Introduction to Computer Science

Jan Verschelde, 10 July 2023

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 1 / 16



software engineering
modules in Python

1 Modular Design
programming in the large
software engineering

2 Good Design in Action
choosing between two designs
justifying the right choice

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 2 / 16



Modular Design
building large software systems

we have practiced programming in the small

programming in the large requires modular design

characteristics of large programs:
1 size: more than 100,000 lines of code

2 effort: many teams of programmers

3 time: program maintenance and evolution

modular design of programs aims to control the complexity of a
program by dividing it into modules
a typical example of a module is a library of functions

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 3 / 16



Design of Software Systems – Layers or Levels

Layers typical for almost any software system:
1 the kernel consists of basic functions
2 the main operations apply the kernel
3 the user interface defines how the user

interacts with the software

An operating system is an example of a large software system.

For another example, the mathematical software SageMath
consists of

1 components which focus on a particular area
2 ipython: modification of Python interpreter
3 notebook interface is GUI (Graphical User Interface)

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 4 / 16



software engineering
modules in Python

1 Modular Design
programming in the large
software engineering

2 Good Design in Action
choosing between two designs
justifying the right choice

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 5 / 16



Modules
components of software systems

A software system consists of
1 a collection of modules; and
2 the relations between the modules.

Modular design defines the decomposition of a system into modules.

Each module has an interface and a body:
interface is the set of all elements in a module available

to all users of the module, also called the module’s
exported resources

body is what realizes the functionalities of a module,
also called the implementation.

A module imports resources from another module.
A module exports resources via its interface.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 6 / 16



Principles of Modular Design
criteria for good software engineering

The software architect designs the system architecture.
The system architecture represents the decomposition of the system
into modules and the intermodule relations.

A first recommendation to design modular software:

Information Hiding
The interface must be separated from the body.
Programs that rely on the module via its interface
do not have to be rewritten as the body changes.

This principle implies that the interface of a module contains
the right kind of information.

Example: Users who need to manipulate polynomials should not be
required to take into account the internal data structures used to
represent the polynomials.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 7 / 16



Bottom-Up Design of Programs
principle of low coupling and high cohesion

Modules are implemented by different teams of programmers,
often working over different time periods.
The functionality of a module must be ready for testing and verification
independently of the rest of the program.

A second recommendation to design modular software:

Low Coupling and High Cohesion
Low coupling means that modules are largely independent
from each other.

Functions often used together belong to the same module
so each module has a high internal cohesion.

A module to manipulate polynomials should collect all the operations
needed in the software system.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 8 / 16



Reuse of Modules
standard libraries of components

Software development is an expensive process...

A third recommendation to design modular software:

Design for Change
For example, use of parameters and constants for data
that may later change.

For modules to manipulate polynomials, we foresee that different
coefficient fields could be needed.

Object-oriented design is typically bottom up
and leads to reusable software.

We will cover object-oriented programming in Python.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 9 / 16



software engineering
modules in Python

1 Modular Design
programming in the large
software engineering

2 Good Design in Action
choosing between two designs
justifying the right choice

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 10 / 16



making a good design

Consider the modular structure of a program to compose music
for a band consisting of guitar, drum, and piano.
Each instrument comes with in and out functions.
The in function takes instructions and simulates the sound.
The out function prints instructions for the musician.

We can design the program in two ways:
1 There are two modules: input and output.

The input module collects all in functions of the instrument.
All out functions are in output.

2 There is a separate module for each instrument.
Each module contains the in and out functions for the
instrument.

Which design would be best?
Justify using the principles of good modular design.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 11 / 16



software engineering
modules in Python

1 Modular Design
programming in the large
software engineering

2 Good Design in Action
choosing between two designs
justifying the right choice

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 12 / 16



justifying the right choice

The second design works best.

Justification along the three principles:
1 information hiding,
2 high cohesion and low coupling,
3 design for change.

Information Hiding
The programmer of a module in the first design needs to know the ins
and outs of each instrument,
while in the second design, a programmer of a module can focus on
one instrument.

In the second design, each module hides the details about its
instrument to the other modules.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 13 / 16



The Second Principle
high cohesion and low coupling

There is high cohesion in the second design because all functionality
about one instrument remains in one module,

while the functionality of one instrument is spread out over several
modules in the first design.

In the first design there is high coupling because the instructions for
the input to simulate the sounds will be similar to what will be given to
the musicians.

There is low coupling in the second design, because the programmer
can share conventions in input and output routines, proper for each
instrument.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 14 / 16



The Third Principle
design for change

If another instrument is added to the band . . .

In the second design,
we have to add only another module,
the existing modules remain the same.

In the first design,
we need to change all existing modules.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 15 / 16



Exercises

1 Describe the cohesion and coupling for a novel and a textbook.
Compare the differences in degrees of cohesion
and coupling for both.

2 Modify the modular design of the stack into a module to represent
a queue of data. Define in the module queue_of_data the
operations enqueue and dequeue to respectively add and
remove elements. Define input/output and write a test program.

3 Design a program to search a phone directory. Users can enter a
name (or a telephone number) and the program will then search
for the corresponding telephone number (or name). Draw your
modular design. For each module describe what functions are
exported and what is imported. Justify your design, referring to the
three key principles of good design.

Intro to Computer Science (MCS 260) software engineering & modular design L-23 10 July 2023 16 / 16


	Modular Design
	programming in the large
	software engineering

	Good Design in Action
	choosing between two designs
	justifying the right choice


