Review of Computer Literacy

1. final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2. some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design

MCS 260 Lecture 42
Introduction to Computer Science
Jan Verschelde, 25 April 2016
review of computer literacy

1. final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2. some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design
The exam will take place on Tuesday 3 May, from 8AM till 10AM.
If an emergency prevents you from participation, please contact me as soon as you are able to so we can schedule a makeup exam in finals week.
The final exam is comprehensive and covers the entire course.
Please review the posted answers to the midterm and the quizzes.
review of computer literacy

1. final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2. some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design
policies for the final exam

The exam will be closed book, no notes, and no computer.

The material breaks down in two parts:

1. **computer science concepts**: define a term, give an example, explain the difference.

2. **mathematical CS**: binary and hexadecimal representations of numbers, boolean algebra, truth tables, design of algorithms and programs via flowcharts, principles of good modular design, UML diagrams.

This review contains some preliminary examples of questions which may help you prepare for the literacy part of the final exam.
final exam on Tuesday 3 May 2015, at 8AM
- general information
- policies for the final exam

some example questions
- computer literacy terms
- mathematical computer science
- algorithm design
- modular design
- object-oriented design
computer literacy terms

See the posted script `literacy.py`.

This script contains a dictionary of a bit more than 200 terms, organized according to each lecture.

The main function in the script pulls a term at random and as hint shows the lecture number where the term was explained.

Review: run the script and consult the lecture slides if needed.
review of computer literacy

1. final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2. some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design
mathematical computer science

Please see the answers to the first midterm exam:
- binary and hexadecimal number system,
- logic expressions and truth tables.
truth tables

Use truth tables to verify that

\[\left(\overline{A} \land B \land C \right) \lor \left(A \land \overline{B} \land C \right) \lor \left(A \land B \land \overline{C} \right) \lor \left(A \land B \land C \right)\]

is equivalent to

\[\left(A \land B \right) \lor \left(B \land C \right) \lor \left(A \land C \right)\].

Draw a realization of the second expression using the diagrams for the logic gates.
Consider the circuit

Take 0 for A, the value 1 for B, and 0 for C.
What does the circuit compute?
Write the logical expression that corresponds with this circuit.
review of computer literacy

1. final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2. some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design
Consider the following pseudocode.

Input: a list `c` of numbers, `len(c) > 0`, and a number `x`.
Output: the sum of `c[k]*x**k` for `k` in `range(len(c))`.

```python
n = len(c)
s = c[n-1]
for k in the range n-2, n-3, .., 0 do
    s = s*x + c[k]
```

1. Draw the flowchart for the algorithm.
2. What is the cost of this algorithm?
review of computer literacy

1 final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2 some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design
Consider the modular design of a program for an online quiz on Calculus I and Calculus II. The design could be done in two different ways, described below.

1. **There are two modules, called Calculus I and Calculus II.** The module Calculus I stores questions and answers for topics covered in Calculus I. Questions and answers for Calculus II are in the other module, called Calculus II.

2. **There are two modules, called Questions and Answers.** The module Questions stores all questions for the topics covered in Calculus I and Calculus II. Answers to all questions are defined by the module Answers.

Which design is best? (a) or (b)?

Justify your choice by referring to the key principles of modular design.
review of computer literacy

1. final exam on Tuesday 3 May 2015, at 8AM
 - general information
 - policies for the final exam

2. some example questions
 - computer literacy terms
 - mathematical computer science
 - algorithm design
 - modular design
 - object-oriented design
object-oriented design

Describe the object oriented design of a car rental company.

After logging in, employees can add or delete customers, add or delete cars, in addition to all operations also all customers are allowed to do.

Customers can view the cars that are currently available, they can check out or return a car.

Use UML to define

- class diagrams and
- use case diagrams

to model the car rental company.