Outline

0 Verification Techniques
@ software testing: search bugs
@ black-box and white-box testing
@ static and dynamic testing

e Programming by Contract
@ assert statements in Python
@ preconditions, postconditions, and loop invariants
@ type annotations

e Automatic Theorem Proving
@ the four-colour theorem

MCS 260 Lecture 29
Introduction to Computer Science
Jan Verschelde, 17 July 2023

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 1/25

Verification Techniques

objectives and requirements of software verification

Software is a product, subject to quality control.

A product has (industrial) quality if it performs as specified,
as expected by the user.

Software testing is part of the software development process
(be it waterfall or spiral):

@ companies often employ as many software testers
as they have developers;

@ preliminary versions must pass through beta testing.

The profession of a software tester is just as essential
as that of a software developer to achieve quality.

Software testing is that part of software engineering
concerned with the systematic search for bugs.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

2/25

four stages in the spiral model

l.analysis ———~ |l. design

IV. verification «— lll. implementation

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 3/25

software testing
verification techniques

@ \Verification Techniques
@ software testing: search bugs

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 4/25

Intel Pentium Floating-Point Division Bug

an infamous software error case study

On 30 October 1994, Dr. Thomas R. Nicely of Lynchberg College
traced an unexpected result from his calculations to an incorrect
division done by his Pentium PC.

The bug occurs only rarely, but what is really notable is the way Intel
handled the situation:

@ Although software test engineers had found the bug,
management decided not to fix or even announce it.

@ Once the bug came out, Intel attempted to diminish
its perceived severity.

@ Replacement of faulty chips would require proof
that the user was affected.

After public outcry, replacements costed $400 million.
Now Intel reports known bugs and monitors feedback.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

5/25

Software Testing: formal definition of a software bug

The specification defines the software:
how it acts, what it does, and what it does not do.

A software bug occurs when one or more of
the five following rules are true:

@ The software doesn’t do something
that the specification says it should do.

@ The software does something
that the specification says it shouldn’t do.

© The software does something
that the specification doesn’t mention.

© The software doesn’t do something
that the specification doesn’t mention, but should.

© The software is difficult to understand, hard to use, slow, or viewed
by the user as just plain not right.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 6/25

software testing
verification techniques

@ \Verification Techniques

@ black-box and white-box testing

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 7125

Categories of Software Testing

black-box and white-box

A fundamental requirement is experimental repeatability:
the same circumstances produce the same results.

We distinguish between
white -box testing: choice of input data is based on the internal
structure of the program;
for example: test the functionality offered by one module.

black -box testing: choice of input data is based on the
functional specification;
beta testing mostly falls in this category.

White-box (also called glass-box) testing views software from a

developer’s perspective, whereas black-box testing assumes
the user’s position.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 8/25

software testing

verification techniques

@ \Verification Techniques

@ static and dynamic testing

Intro to Computer Science (MCS 260)

software testing & verification

Static and Dynamic Testing

combined with white-box and black-box

An additional dimension of testing:
Static: read specification or source code;
Dynamic: execute software or test programs.
to the black-box and white-box testing.

We distinguish four types of testing:
@ Static black-box testing: test the specification.
@ Static white-box testing: inspect the code.
© Dynamic black-box testing: beta testing.
© Dynamic white-box testing: towards debugging.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

10/25

Verification and Validation

about static black-box testing
We distinguish between
Verification: does software meet its specification?
Validation: does software meet user requirements?
The difference often looks subtle:
Verification: have we solved the equations right?
Validation: have we solved the right equations?
Computing with high working precision (i.e.: many decimal places)
may not lead to accurate results.

The Hubble telescope met its specifications
on the ground, but not in space.

Never assume that the specification is correct!

Review of the specification requires an understanding of customer
expectations, and familiarity of similar products.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

11/25

Examining the Code

about static white-box testing

A formal review is often peer review:
done by another programmer (buddy review).

Adhering to coding standards and guidelines
facilitate code inspections.
A checklist with some types of errors:
@ data reference, e.g.: initialization done?
© data declaration, e.g.: of correct type?
© computation, e.g.: overflow or underflow?
© comparison, e.g.: when are two floats zero?
@ control flow, e.g.: all cases covered?
@ subroutine parameters, e.g.: correct order of input?
@ /0, e.g.: are file formats consistent?

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

12/25

Dynamic black-box Testing

beta testing

Two fundamental approaches to testing:
test to pass: as an ideal customer would; or
test to fail: force errors, provoke exceptions.

Equivalence partitioning reduces the huge set of all possible test cases
to a smaller but equally effective set.

Example: test calculator, 1+2 is in same class as 1+5,
butl + 999999999999999999999999 is not!

data testing: check for random and extreme values, what if
enter is pressed without input, test for incorrect input.

state testing: verify logic of program through its states. A state
is a condition of the software.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 13/25

Dynamic white-box Testing
towards debugging

The tests consist of data and procedures.
Isolating the bugs is a common goal with debugging,
although dynamic white-box testing is not debugging.
We distinguish between
unit testing: lowest level, within a module.

integration testing: after low level bugs are fixed.
Two approaches:

Bottom up: test drivers exercise the modules.

Modules may be delivered with test programs that cover its complete
functionality.

Top down: using stubs in place of real modules.

Example: replace thermometer with sensors by a file with test
temperature values.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 14 /25

Applying your Testing Skills

Some specific areas to test:
@ configuration testing: suitable hardware?
© compatibility testing: relation to other software?
© foreign language testing: does it makes sense?
© usability testing: easy to use?
@ testing the documentation: a good manual?
© testing software security: safe to use?
@ website testing: gray-box with html.

For more on the job of software tester:
Ron Patton: Software Testing. Second Edition.
Sams Publishing, 2006.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

15/25

software testing
verification techniques

@ Programming by Contract
@ assert statements in Python

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 16/25

Programming by Contract

the assert statement

To build reliable object-oriented software, the language Eiffel
implements the concept of design by contract.

Similar to contracts between humans,
we include preconditions and postconditions to any routine.

A precondition is a condition on an input parameter.
A postcondition is a condition on an output parameter.

Taking invariants into account,
one can provide mathematical proofs of correctness.

The most recent version of the Ada standard, Ada 2012,
supports contract-based programming.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

17/25

the assert statement

To implement preconditions and postconditions in Python
we use the assert statement:

>>> x = 4

>>> assert x > 0

>>> assert x < 0

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AssertionError

Exceptions will be raised if _ _debug_ _ is True.

Not meeting the assertions leads to a crash.
Running the program in debug mode means:
test and enforce all assertions.

Turning on basic optimizations in python -0 turns off _ _debug_

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

18/25

software testing
verification techniques

9 Programming by Contract

@ preconditions, postconditions, and loop invariants

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 19/25

Searching a List: preconditions and postconditions

def searchlist (items, item):
nmwn
Searches a list items for the integer item,
returns -1 if the item does not belong to the list,
or else returns the position of the item in the list.

Preconditions:
isinstance (items, list) and isinstance(item, int)

Postconditions:
searchlist (items, item) == -1 or
searchlist (items, item) == pos and items[pos] == item

nmmwn

@ We enforce conditions with assert.

@ A loop invariantis a property of a loop that
remains true during the entire execution of the loop.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 20/25

software testing

verification techniques

9 Programming by Contract

@ type annotations

Intro to Computer Science (MCS 260)

software testing & verification

gradual typing with annotations

@ Python is dynamically typed as the interpreter determines
the type of each variable during execution of a script.

@ In a statically typed language, the type of each variable is fixed

in the code, fixed before execution.

@ Python supports gradual typing via annotations
which allow static type checking.

>>> name: str = "hello annotation"
>>> annotations
{"name’ : <class ’str’>}

>>> def search(L: list, 1i: int) —-> int:

return L.index (i)

>>> help (search)

Intro to Computer Science (MCS 260) software testing & verification

L-29 17 July 2023

22/25

software testing

verification techniques

0 Automatic Theorem Proving

@ the four-colour theorem

Intro to Computer Science (MCS 260)

software testing & verification

Automatic Theorem Proving

Theorem (The Four-Colour Theorem)

Four colours suffice to color a map so no two adjacent regions receive
the same color.

Conjectured first in 1852 by Francis Guthrie.

Proof in 1976 by Kenneth Appel and Wolfgang Haken at the University
of lllinois uses a computer to check 1,936 configurations.

(impractical to check by hand)
Worry: how can proof be correct if program can have bugs?

Georges Gonthier (MS Research, Cambridge):
“A computer-checked proof of the Four Color Problem."
Using the proof checker Coq in 2005.

Certificate-producing mathematical software.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023 24/25

Exercises

@ Who was Grace Hopper? Read the wikipedia entry about the
anecdotal origin of the word bug in connection with computers.
Write one paragraph with explanations in your own words.

© Do conda install pylint and run it on one of your scripts.

Explain the output of this run in your own words.

© Take any of your computer projects (the ones without perfect
score) and explain the bugs.

© Can you find any bugs in the solutions to the computer projects
posted at the course web site?

@ Consider a function to sum a list of integer numbers. Write its
specification using pre- and postconditions.

© Use the assert statement in the Python code to implement the
conditions in the function of the previous exercise.

Intro to Computer Science (MCS 260) software testing & verification L-29 17 July 2023

25/25

	Verification Techniques
	software testing: search bugs
	black-box and white-box testing
	static and dynamic testing

	Programming by Contract
	assert statements in Python
	preconditions, postconditions, and loop invariants
	type annotations

	Automatic Theorem Proving
	the four-colour theorem

