
Arrays and Matrices

1 Sieve of Eratosthenes
counting primes
arrays in Python

2 Matrices
matrices as lists of arrays
finding the minimum
finding saddle points

MCS 275 Lecture 3
Programming Tools and File Management

Jan Verschelde, 13 January 2017

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 1 / 38

Arrays and Matrices

1 Sieve of Eratosthenes
counting primes
arrays in Python

2 Matrices
matrices as lists of arrays
finding the minimum
finding saddle points

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 2 / 38

the Sieve of Eratosthenes

Input/Output specification:
input : a natural number n

output : all prime numbers ≤ n

Running factorization in primes for all numbers ≤ n
is too expensive.
Sieve of Eratosthenes:

1 Boolean table isprime[i] records prime numbers:
if i is prime, then isprime[i] == True,
otherwise isprime[i] == False.

2 All multiples of prime numbers are not prime:
for all isprime[i]: isprime[i*k] = False.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 3 / 38

all primes less than 10

T = True, F = False

i 2 3 4 5 6 7 8 9 10
0 T T T T T T T T T
2 T T F T F T F T F
3 T T F T F T F F F

Initially, all entries in the table are True.

The algorithm uses a double loop:
1 the first loop runs for i from 2 to n;
2 the second loop runs only if i is prime,

setting to False all multiples of i .
Be more efficient, first loop: while (i < n//i).

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 4 / 38

Arrays and Matrices

1 Sieve of Eratosthenes
counting primes
arrays in Python

2 Matrices
matrices as lists of arrays
finding the minimum
finding saddle points

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 5 / 38

Arrays in Python

Arrays are
sequences of fixed length;
filled with objects of the same type.

Compared to lists (variable length, heterogeneous),
arrays are more memory efficient, faster access.

Available in Python via the module array.
The module array exports the class array.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 6 / 38

creating arrays from lists

>>> from array import array
>>> L = range(2, 7)
>>> a = array(’b’, L)
array(’b’, [2, 3, 4, 5, 6])

The ’b’ stands for signed integer, one byte.

Selecting and slicing:

>>> a[1]
3
>>> a[1:3]
array(’b’, [3, 4])

The current memory info is obtained as

>>> a.buffer_info()
(28773520, 5)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 7 / 38

types of entries
The types are restricted to numerical types.

Type code C Type #bytes
’b’ signed integer 1
’B’ unsigned integer 1
’u’ Unicode character 2
’h’ signed integer 2
’H’ unsigned integer 2
’i’ signed integer 2
’I’ unsigned integer 2
’l’ signed integer 4
’L’ unsigned integer 4
’q’ signed integer 8
’Q’ unsigned integer 8
’f’ floating point 4
’d’ floating point 8

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 8 / 38

from arrays to lists

>>> from array import array
>>> L = range(2,7)
>>> A = array(’b’, L)
>>> A
array(’b’, [2, 3, 4, 5, 6])
>>> type(A)
<class ’array.array’>

With the method tolist,
we convert the array to a list:

>>> K = A.tolist()
>>> K
[2, 3, 4, 5, 6]
>>> type(K)
<class ’list’>

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 9 / 38

arrays and strings

Python session continued ...

>>> s = A.tostring()
>>> s
b’\x02\x03\x04\x05\x06’

In reverse, we can make an array from a string s:

>>> B = array(’b’)
>>> B.fromstring(s)
>>> B
array(’b’, [2, 3, 4, 5, 6])

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 10 / 38

initializing the sieve

T = True, F = False

i 2 3 4 5 6 7 8 9 10
0 T T T T T T T T T

Initially, all entries in the table are True.

def prime_sieve(nbr):
"""
Returns all primes less than nbr.
"""
isprime = array(’B’)
for _ in range(nbr+1):

isprime.append(1)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 11 / 38

the function prime_sieve continued ...

The algorithm uses a double loop:
1 the first loop runs for i from 2 to n;
2 the second loop runs only if i is prime,

setting to False all multiples of i .

i = 2
while i < nbr//i+1:

if isprime[i] == 1:
for j in range(i, nbr//i+1):

isprime[i*j] = 0
i = i + 1

Why is nbr//i+1 necessary?

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 12 / 38

the function prime_sieve continued ...

Collecting the primes from the sieve:

primes = array(’l’)
for i in range(2, nbr+1):

if isprime[i] == 1:
primes.append(i)

return primes

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 13 / 38

the complete function

def prime_sieve(nbr):
"""
Returns all primes less than nbr.
"""
isprime = array(’B’)
for _ in range(nbr+1):

isprime.append(1)
i = 2
while i < nbr//i+1:

if isprime[i] == 1:
for j in range(i, nbr//i+1):

isprime[i*j] = 0
i = i + 1

primes = array(’l’)
for i in range(2, nbr+1):

if isprime[i] == 1:
primes.append(i)

return primes

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 14 / 38

sieve.py as a script and module

def main():
"""
Prompts the user for a natural number n and
prints all primes less than or equal to n.
"""
nbr = int(input(’give a positive number : ’))
primes = prime_sieve(nbr)
count = primes.buffer_info()[1]
print(’#primes = ’, count)
print(’ primes = ’, primes)

if __name__ == "__main__":
main()

Why are the last two lines useful?

>>> from sieve import prime_sieve
>>> p = prime_sieve(100)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 15 / 38

Arrays and Matrices

1 Sieve of Eratosthenes
counting primes
arrays in Python

2 Matrices
matrices as lists of arrays
finding the minimum
finding saddle points

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 16 / 38

matrices as lists of arrays
Python does not have a two dimensional array type.
Instead we can store a matrix as a list of rows,
where the data on each row is stored in an array.

Consider a 5-by-5 matrix of random two digit numbers:

>>> from array import array
>>> from random import randint
>>> A = [array(’b’,[randint(10, 99)
... for _ in range(5)])
... for _ in range(5)]
>>> for row in A: print(row)
...
array(’b’, [23, 62, 85, 82, 38])
array(’b’, [68, 54, 18, 16, 37])
array(’b’, [91, 70, 88, 42, 56])
array(’b’, [42, 61, 90, 91, 41])
array(’b’, [40, 13, 19, 66, 54])

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 17 / 38

selecting entries

>>> for row in A: print(row)
...
array(’b’, [23, 62, 85, 82, 38])
array(’b’, [68, 54, 18, 16, 37])
array(’b’, [91, 70, 88, 42, 56])
array(’b’, [42, 61, 90, 91, 41])
array(’b’, [40, 13, 19, 66, 54])

To select the row with index 2:

>>> A[2]
array(’b’, [91, 70, 88, 42, 56])

To select the element in column 3 or row 2:

>>> A[2][3]
42

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 18 / 38

matrices from functions
A 5-by-5 matrix whose (i , j)-th element is i + j :

>>> from array import array
>>> f = lambda x,y: x+y

The function f defines the (i , j)-th entry.
We use f in a doubly nested list comprehension to define a list of rows:

>>> L = [array(’b’,[f(i,j) for i in range(5)])
... for j in range(5)]
>>> for row in L: print(row)
...
array(’b’, [0, 1, 2, 3, 4])
array(’b’, [1, 2, 3, 4, 5])
array(’b’, [2, 3, 4, 5, 6])
array(’b’, [3, 4, 5, 6, 7])
array(’b’, [4, 5, 6, 7, 8])

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 19 / 38

paraboloids, for a geometric test
The simplest mathematical description of a paraboloid

z = x2 + y2

(0,0,0) is the minimum; plotted (with Maple) as

-2

-10
2

2

01
y

4

0
1x

6

-1
2-2

8

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 20 / 38

a sampled paraboloid
In the setup, we want a

a 10-by-10 matrix of integer valued points;
where the minimum occurs at row 5, column 5.

Therefore, we sample (x − 5)2 + (y − 5)2,
for x and y both ranging from 0 till 9.

def test():
"""
Tests the findmin on the values on a paraboloid.
"""
from array import array
paraboloid = lambda x, y: (x-5)**2+(y-5)**2
data = [array(’b’, [paraboloid(i, j) \

for i in range(10)]) \
for j in range(10)]

print(’looking for a minimum in ’)
for row in data:

print(row)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 21 / 38

what test() prints

looking for a minimum in
array(’b’, [50, 41, 34, 29, 26, 25, 26, 29, 34, 41])
array(’b’, [41, 32, 25, 20, 17, 16, 17, 20, 25, 32])
array(’b’, [34, 25, 18, 13, 10, 9, 10, 13, 18, 25])
array(’b’, [29, 20, 13, 8, 5, 4, 5, 8, 13, 20])
array(’b’, [26, 17, 10, 5, 2, 1, 2, 5, 10, 17])
array(’b’, [25, 16, 9, 4, 1, 0, 1, 4, 9, 16])
array(’b’, [26, 17, 10, 5, 2, 1, 2, 5, 10, 17])
array(’b’, [29, 20, 13, 8, 5, 4, 5, 8, 13, 20])
array(’b’, [34, 25, 18, 13, 10, 9, 10, 13, 18, 25])
array(’b’, [41, 32, 25, 20, 17, 16, 17, 20, 25, 32])

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 22 / 38

Arrays and Matrices

1 Sieve of Eratosthenes
counting primes
arrays in Python

2 Matrices
matrices as lists of arrays
finding the minimum
finding saddle points

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 23 / 38

finding the minimum in a matrix

input : a matrix A
output : (i, j): A[i][j] is the minimum

Algorithm:
1 initialize current minimum with A[0][0], and

initialize its position to (0, 0)

2 go over all rows i and columns j of A
3 if A[i][j] is less than current minimum,

assign A[i][j] to the current minimum,
assign (i, j) to its position

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 24 / 38

the function findmin

def findmin(matrix):
"""
Returns the row and the column indices
of the minimum element in the matrix.
"""
(row, col) = (0, 0)
val = matrix[row][col]
for i in range(0, len(matrix)):

nbcols = matrix[i].buffer_info()[1]
for j in range(0, nbcols):

if matrix[i][j] < val:
(row, col) = (i, j)

val = matrix[row][col]
return (row, col)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 25 / 38

calling findmin()

def test():

...

(i, j) = findmin(data)
print(’minimum value %d occurs at (%d, %d)’ \

% (data[i][j], i, j))

if __name__ == "__main__":
test()

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 26 / 38

Running the Test

At the command prompt $:

$ python findmin.py
looking for a minimum in
array(’b’, [50, 41, 34, 29, 26, 25, 26, 29, 34, 41])
array(’b’, [41, 32, 25, 20, 17, 16, 17, 20, 25, 32])
array(’b’, [34, 25, 18, 13, 10, 9, 10, 13, 18, 25])
array(’b’, [29, 20, 13, 8, 5, 4, 5, 8, 13, 20])
array(’b’, [26, 17, 10, 5, 2, 1, 2, 5, 10, 17])
array(’b’, [25, 16, 9, 4, 1, 0, 1, 4, 9, 16])
array(’b’, [26, 17, 10, 5, 2, 1, 2, 5, 10, 17])
array(’b’, [29, 20, 13, 8, 5, 4, 5, 8, 13, 20])
array(’b’, [34, 25, 18, 13, 10, 9, 10, 13, 18, 25])
array(’b’, [41, 32, 25, 20, 17, 16, 17, 20, 25, 32])
minimum value 0 occurs at (5, 5)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 27 / 38

Saddles
The simplest mathematical description of a saddle is

z = x2 − y2

(0,0,0) is a saddle point; plotted (with Maple) as

-2

-1-4
2

-2

01
y

0

0
1x

2

-1
2-2

4

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 28 / 38

saddle points in a sampled surface

The test function is similar.

def test():
"""
Testing the location of saddle points.
"""
from array import array
surface = lambda x, y: - (x-5)**2 + (y-5)**2
data = [array(’b’, [surface(i, j) \

for i in range(10)]) \
for j in range(10)]

print(’looking for a saddle in ’)
for row in data:

print(row)

Observe the minus sign in the definition of surface.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 29 / 38

the test matrix

Edited output (to display the columns better):

looking for a saddle in
array(’b’, [0, 9, 16, 21, 24, 25, 24, 21, 16, 9])
array(’b’, [-9, 0, 7, 12, 15, 16, 15, 12, 7, 0])
array(’b’, [-16, -7, 0, 5, 8, 9, 8, 5, 0, -7])
array(’b’, [-21, -12, -5, 0, 3, 4, 3, 0, -5, -12])
array(’b’, [-24, -15, -8, -3, 0, 1, 0, -3, -8, -15])
array(’b’, [-25, -16, -9, -4, -1, 0, -1, -4, -9, -16])
array(’b’, [-24, -15, -8, -3, 0, 1, 0, -3, -8, -15])
array(’b’, [-21, -12, -5, 0, 3, 4, 3, 0, -5, -12])
array(’b’, [-16, -7, 0, 5, 8, 9, 8, 5, 0, -7])
array(’b’, [-9, 0, 7, 12, 15, 16, 15, 12, 7, 0])

Observe the occurrence of the zero entries.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 30 / 38

Arrays and Matrices

1 Sieve of Eratosthenes
counting primes
arrays in Python

2 Matrices
matrices as lists of arrays
finding the minimum
finding saddle points

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 31 / 38

finding saddle points

A saddle point in a matrix A is
1 maximal in its row; and
2 minimal in its column.

Problem (input/output specification):
input : a matrix A
output : list of (i,j) of saddles A[i][j]

Algorithm:
1 for all rows i, let A[i][maxcol] be maximal
2 check in column maxcol whether
A[i][maxcol] <= A[k][maxcol], for all k != i

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 32 / 38

tracing the execution of the algorithm
looking for a saddle in
array(’b’, [0, 9, 16, 21, 24, 25, 24, 21, 16, 9])
array(’b’, [-9, 0, 7, 12, 15, 16, 15, 12, 7, 0])
array(’b’, [-16, -7, 0, 5, 8, 9, 8, 5, 0, -7])
array(’b’, [-21, -12, -5, 0, 3, 4, 3, 0, -5, -12])
array(’b’, [-24, -15, -8, -3, 0, 1, 0, -3, -8, -15])
array(’b’, [-25, -16, -9, -4, -1, 0, -1, -4, -9, -16])
array(’b’, [-24, -15, -8, -3, 0, 1, 0, -3, -8, -15])
array(’b’, [-21, -12, -5, 0, 3, 4, 3, 0, -5, -12])
array(’b’, [-16, -7, 0, 5, 8, 9, 8, 5, 0, -7])
array(’b’, [-9, 0, 7, 12, 15, 16, 15, 12, 7, 0])
max 25.0 in row 0, column 5 smaller value in row 1
max 16.0 in row 1, column 5 smaller value in row 2
max 9.0 in row 2, column 5 smaller value in row 3
max 4.0 in row 3, column 5 smaller value in row 4
max 1.0 in row 4, column 5 smaller value in row 5
max 0.0 in row 5, column 5 saddle at (5,5)
max 1.0 in row 6, column 5 smaller value in row 5
max 4.0 in row 7, column 5 smaller value in row 4
max 9.0 in row 8, column 5 smaller value in row 3
max 16.0 in row 9, column 5 smaller value in row 2

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 33 / 38

the function saddle()

We go over all rows, looking for the largest element.

def saddle(matrix):
"""
Returns the coordinates of saddles:
maximum in rows, minimum in columns.
"""
result = []
for i in range(0, len(matrix)):

(maxval, maxcol) = (matrix[i][0], 0)
nbcols = matrix[i].buffer_info()[1]
for j in range(1, nbcols):

if matrix[i][j] > maxval:
(maxval, maxcol) = (matrix[i][j], j)

prt = ’max %.1f in row %d, column %d’ \
% (maxval, i, maxcol)

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 34 / 38

checking whether minimal in its column

We have a candidate saddle point in matrix[i][maxcol].
Now we check whether it is minimal in its column, in the i-loop:

is_saddle = True
for k in range(0, len(matrix)):

if(k != i):
if matrix[k][maxcol] < maxval:

prt = prt + ’ smaller value in row %d’ % k
is_saddle = False
break

if is_saddle:
prt = prt + ’ saddle at (%d,%d)’ % (i, maxcol)
result.append((i, maxcol))

print prt
return result

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 35 / 38

Summary

For working with numerical data, arrays are more memory efficient.

Searching in two dimensional tables is a common problem:
finding extremal values;
locating saddle points.

Such searching algorithms apply the same double loop:
for all rows, for all columns, do something.

Later we will scan all words from a page of text on file:
for all lines on the page, read all words on the line.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 36 / 38

Exercises

1 Give a Python function swap to reverse the order of the elements
in an array. After calling swap
on A = [2 9 8 3], we have A = [3 8 9 2].
Do not create a new array inside swap.

2 Write a Python function Duplicates whose input is an array A
and output is a list of elements that occur at least twice in A.

3 A plateau in an array is the longest sequence of the same
elements that occur in the array.
Write a Python function that returns the start and begin index of a
plateau in a given array.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 37 / 38

More exercises

4 Extend the function saddle with a parameter verbose which
takes the default value True. If verbose, then the strings prt are
shown, otherwise the function saddle does not print anything.

5 For a two dimensional matrix of integer values, write a formatted
print function: every entry is printed with the formatting string
’%3d’.

6 Extend the findmin to find the smallest value in a 3-dimensional
matrix. Think of a elements in the matrix as temperature
measurements.

Programming Tools (MCS 275) Arrays and Matrices L-3 15 January 2016 38 / 38

