
from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

MCS 275 Lecture 18
Programming Tools and File Management

Jan Verschelde, 20 February 2017

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 1 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 2 / 33

Quicksort Revisited
using arrays

Recall the idea of Quicksort:
1 choose x and partition list in two:

left list: ≤ x and right list: ≥ x
2 sort the lists left and right

Our first implementation of Lecture 16
is recursively functional.

→ Python’s builtin lists handle all data

pro: convenient for programming
con: multiple copies of same data

Goals: 1. use arrays for data efficiency,
2. turn recursion into iteration.

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 3 / 33

arrays of random integers

from array import array as Array

def main():
"""
Generates a random array of integers
and applies quicksort.
"""
low = int(input(’Give lower bound : ’))
upp = int(input(’Give upper bound : ’))
nbr = int(input(’How many numbers ? ’))
ans = input(’Extra output ? (y/n) ’)
from random import randint
nums = [randint(low, upp) for _ in range(nbr)]
data = Array(’i’, nums)
print(’A =’, data)
recursive_quicksort(data, 0, nbr, ans == ’y’)
print(’A =’, data)

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 4 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 5 / 33

partitioning arrays

Take x in the middle of the array.
Apply scan and swap, for i < j :

if A[i] > x and A[j] < x : A[i], A[j] = A[j], A[i]

For example: A = [31 93 49 37 56 95 74 59]
At the middle: x = 56 (== A[4])

Start with i = 0 and j = 8.
Increase i while A[i] < x , end at i = 1.
Decrease j while A[j] > x , end at j = 4.

Swap A[1] and A[4], and continue scanning A.

A = [31 93 49 37 56 95 74 59]
i = 4, j = 3, x = 56
A[0:4] = [31 56 49 37] <= 56
A[4:8] = [93 95 74 59] >= 56

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 6 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 7 / 33

the function partition()

The specification and documentation:

def partition(arr, first, last):
"""
Partitions arr[first:last] using as pivot
the middle item x. On return is (i, j, x):
i > j, all items in arr[i:last] are >= x,
all items in arr[first:j+1] are <= x.
"""

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 8 / 33

the body of partition()

def partition(arr, first, last):

pivot = arr[(first+last)//2]
i = first
j = last-1
while i <= j:

while arr[i] < pivot:
i = i+1

while arr[j] > pivot:
j = j-1

if i < j:
(arr[i], arr[j]) = (arr[j], arr[i])

if i <= j:
(i, j) = (i+1, j-1)

return (i, j, pivot)

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 9 / 33

checking postconditions for correctness

Important to verify the correctness:

i = 4, j = 3, x = 56
A[0:4] = [31 56 49 37] <= 56
A[4:8] = [93 95 74 59] >= 56

def check_partition(arr, first, last, i, j, pivot):
"""
Prints the result of the partition
for a visible check on the postconditions.
"""
print(’i = %d, j = %d, x = %d’ % (i, j, pivot))
print(’arr[%d:%d] =’ % (first, j+1), \

arr[first:j+1], ’<=’, pivot)
print(’arr[%d:%d] =’ % (i, last), \

arr[i:last], ’>=’, pivot)

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 10 / 33

a recursive quicksort

def recursive_quicksort(data, first, last, verbose=True):
"""
Sorts the array data in increasing order.
If verbose, then extra output is written.
"""
(i, j, pivot) = partition(data, first, last)
if verbose:

check_partition(data, first, last, i, j, pivot)
if j > first:

recursive_quicksort(data, first, j+1, verbose)
if i < last-1:

recursive_quicksort(data, i, last, verbose)

Important: first sort data[first:j+1].

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 11 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 12 / 33

Converting Recursion into Iteration
a stack for the parameters of the calls

Recursion is executed via a stack.

For quicksort, we store first and last index
of the array to sort.

With every call we push (first, last) on the stack.

As long as the stack of indices is not empty:
1 pop the indices (first, last) from the stack
2 we partition the array A[first:last]
3 push (i, last) and then (first, j+1)

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 13 / 33

running the iterative code

A = [31 93 49 37 56 95 74 59]
S = [(0, 8)]

i = 4, j = 3, x = 56
A[0:4] = [31 56 49 37] <= 56
A[4:8] = [93 95 74 59] >= 56

S = [(0, 4), (4, 8)]

i = 3, j = 1, x = 49
A[0:2] = [31 37] <= 49
A[3:4] = [56] >= 49

S = [(0, 2), (4, 8)]

i = 2, j = 0, x = 37
A[0:1] = [31] <= 37
A[2:2] = [] >= 37

S = [(4, 8)]
...

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 14 / 33

an iterative quicksort

def iterative_quicksort(nbrs, verbose=True):
"""
The iterative version of quicksort
uses a stack of indices in nbrs.
"""
stk = []
stk.insert(0, (0, len(nbrs)))
while stk != []:

if verbose:
print(’S =’, stk)

(first, last) = stk.pop(0)
(i, j, pivot) = partition(nbrs, first, last)
if verbose:

check_partition(nbrs, first, last, i, j, pivot)
if i < last-1:

stk.insert(0, (i, last))
if j > first:

stk.insert(0, (first, j+1))

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 15 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 16 / 33

Towers of Hanoi
moving a pile of disks

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 17 / 33

Towers of Hanoi
the middle stage

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 18 / 33

Towers of Hanoi
the last move

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 19 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 20 / 33

rules of the game

Move a pile of disks from peg A to B:
1 no larger disk on top of smaller disk,
2 use peg C as intermediary location.

A GUI is just an interface to a program...
1 keep solution in a separate script,
2 GUI is primarily concerned with display.

We need a "get_next_move" function.

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 21 / 33

inverting control in a loop

Consider the following pseudo code:

def f(n):
if n == 0: # base case

write result
else:

recursive call(s)

The recursive f controls the calls to write.

while True:
result = get_next();
if no result: break
write result

The pace of writing controls the computation.

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 22 / 33

using stacks

The get_next() function
1 stores all current values of variables and parameters before

returning to the caller,
2 when called again, restores all values.

For the towers of Hanoi we will
1 first convert to an iterative solution,
2 then adjust to an inverted function.

Our data structures:

A = (’A’,range(1,n+1))
B = (’B’,[])
C = (’C’,[])

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 23 / 33

a recursive solution, the base case

def hanoi(nbr, apl, bpl, cpl, k, move):
"""
Moves nbr disks from apl to bpl, cpl is auxiliary.
The recursion depth is counted by k,
move counts the number of moves.
Writes the state of the piles after each move.
Returns the number of moves.
"""
if nbr == 1:

move disk from A to B
bpl[1].insert(0, apl[1].pop(0))
write(k, move+1, nbr, apl, bpl, cpl)
return move+1

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 24 / 33

a recursive solution, the general case

def hanoi(nbr, apl, bpl, cpl, k, move):

if nbr == 1:

else:
move nbr-1 disks from A to C, B is auxiliary
move = hanoi(nbr-1, apl, cpl, bpl, k+1, move)
move nbr-th disk from A to B
bpl[1].insert(0, apl[1].pop(0))
write(k, move+1, nbr, apl, bpl, cpl)
move nbr-1 disks from C to B, A is auxiliary
move = hanoi(nbr-1, cpl, bpl, apl, k+1, move+1)
return move

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 25 / 33

from Recursion to Iteration

1 Quicksort Revisited
using arrays
partitioning arrays via scan and swap
recursive quicksort on arrays

2 converting recursion into iteration
an iterative version with a stack of parameters

3 Inverting Control in a Loop
a GUI for the towers of Hanoi
an interface to a recursive function
inverting an iterative solution

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 26 / 33

an iterative solution for the towers of Hanoi

A stack of arguments of function calls:

stk = [(n, ’A’, ’B’, ’C’, k)] # symbols on the stack
while len(stk) > 0:

top = stk.pop(0)

The recursive code:

if n == 1:
move disk from A to B

else:
move n-1 disks from A to C, B is auxiliary
move n-th disk from A to B
move n-1 disks from C to B, A is auxiliary

Not only arguments of function calls go on the stack!

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 27 / 33

moves on the stack

Observe that B[1].insert(0,A[1].pop(0)) is performed in both
the base case and the general case.

In all cases, we move a disk from A to B,
but only in the base case can we execute directly,
in the general case we must store the move.

A move is stores as a string on the stack:

top = stk.pop(0)
if isinstance(top, str):

eval(top)

The move is stores as B[1].insert(0,A[1].pop(0))
ready for execution, triggered by eval.

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 28 / 33

iterative_hanoi, part I

def iterative_hanoi(nbr, A, B, C, k):
"""
The iterative version uses a stack of function calls.
On the stack are symbols for the piles,
not the actual piles!
"""
stk = [(nbr, ’A’, ’B’, ’C’, k)]
cnt = 0
while len(stk) > 0:

top = stk.pop(0)
if isinstance(top, str):

eval(top)
if top[0] != ’w’:

cnt = cnt + 1 # a move, not a write
else:

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 29 / 33

iterative_hanoi, part II

else:
(nbr, sa, sb, sc, k) = top
move = sb + ’[1].insert(0,’ + sa + ’[1].pop(0))’
if nbr == 1:

move disk from A to B
eval(move)
cnt = cnt + 1
write(k, cnt, nbr, A, B, C)

else: # observe that we swap the order of moves!
move nbr-1 disks from C to B, A is auxiliary
stk.insert(0, (nbr-1, sc, sb, sa, k+1))
move nbr-th disk from A to B
stk.insert(0, ("write(%d,cnt,%d,A,B,C)" % (k, nbr)))
stk.insert(0, move)
move nbr-1 disks from A to C, B is auxiliary
stk.insert(0, (nbr-1, sa, sc, sb, k+1))

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 30 / 33

inverting hanoi
def get_next_move(stk, A, B, C):

"""
Computes the next move, changes the stack stk,
and returns the next move to the calling routine.
"""

def inverted_hanoi(nbr, apl, bpl, cpl, k):
"""
This inverted version of the towers of Hanoi gives
the control to the writing of the piles.
"""
stk = [(nbr, ’A’, ’B’, ’C’, k)]
cnt = 0
while True:

move = get_next_move(stk, apl, bpl, cpl)
if move == ’’:

break
cnt = cnt + 1
pre = ’after move %d :’ % cnt
write_piles(pre, apl, bpl, cpl)

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 31 / 33

body of get_next_move
while len(stk) > 0:

top = stk.pop(0)
if isinstance(top, str):

eval(top)
return top

else:
(nbr, sap, sbp, scp, k) = top
move = sbp + ’[1].insert(0,’ + sap + ’[1].pop(0))’
if nbr == 1:

eval(move) # move disk from A to B
return move

else: # observe that we swap the order of moves!
move nbr-1 disks from C to B, A is auxiliary
stk.insert(0, (nbr-1, scp, sbp, sap, k+1))
move nbr-th disk from A to B
stk.insert(0, move)
move nbr-1 disks from A to C, B is auxiliary
stk.insert(0, (nbr-1, sap, scp, sbp, k+1))

return ’’

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 32 / 33

Exercises

1 Give Python code to enumerate all permutations of an array
without making a copy of the array.

2 Two natural numbers m and n are input to the Ackermann
function A. For m = 0: A(0,n) = n + 1, for m > 0:
A(m,0) = A(m − 1,1), and for m > 0, n > 0:
A(m,n) = A(m − 1,A(m,n − 1)).

1 Give a recursive Python function for A.
2 Turn the recursive function into an iterative one.

3 Write an iterative version of the GUI to draw Hilbert’s space filling
curves.

Programming Tools (MCS 275) from recursion to iteration L-18 20 February 2017 33 / 33

