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Quicksort Revisited
using arrays

Recall the idea of Quicksort:
1 choose x and partition list in two:

left list: ≤ x and right list: ≥ x
2 sort the lists left and right

Our first implementation of Lecture 16
is recursively functional.

→ Python’s builtin lists handle all data

pro: convenient for programming
con: multiple copies of same data

Goals: 1. use arrays for data efficiency,
2. turn recursion into iteration.
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arrays of random integers

from array import array as Array

def main():
"""
Generates a random array of integers
and applies quicksort.
"""
low = int(input(’Give lower bound : ’))
upp = int(input(’Give upper bound : ’))
nbr = int(input(’How many numbers ? ’))
ans = input(’Extra output ? (y/n) ’)
from random import randint
nums = [randint(low, upp) for _ in range(nbr)]
data = Array(’i’, nums)
print(’A =’, data)
recursive_quicksort(data, 0, nbr, ans == ’y’)
print(’A =’, data)
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partitioning arrays

Take x in the middle of the array.
Apply scan and swap, for i < j :

if A[i ] > x and A[j ] < x : A[i ], A[j ] = A[j ], A[i ]

For example: A = [31 93 49 37 56 95 74 59]
At the middle: x = 56 (== A[4])

Start with i = 0 and j = 8.
Increase i while A[i ] < x , end at i = 1.
Decrease j while A[j ] > x , end at j = 4.

Swap A[1] and A[4], and continue scanning A.

A = [31 93 49 37 56 95 74 59]
i = 4, j = 3, x = 56
A[0:4] = [31 56 49 37] <= 56
A[4:8] = [93 95 74 59] >= 56
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the function partition()

The specification and documentation:

def partition(arr, first, last):
"""
Partitions arr[first:last] using as pivot
the middle item x. On return is (i, j, x):
i > j, all items in arr[i:last] are >= x,
all items in arr[first:j+1] are <= x.
"""
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the body of partition()

def partition(arr, first, last):

pivot = arr[(first+last)//2]
i = first
j = last-1
while i <= j:

while arr[i] < pivot:
i = i+1

while arr[j] > pivot:
j = j-1

if i < j:
(arr[i], arr[j]) = (arr[j], arr[i])

if i <= j:
(i, j) = (i+1, j-1)

return (i, j, pivot)
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checking postconditions for correctness

Important to verify the correctness:

i = 4, j = 3, x = 56
A[0:4] = [31 56 49 37] <= 56
A[4:8] = [93 95 74 59] >= 56

def check_partition(arr, first, last, i, j, pivot):
"""
Prints the result of the partition
for a visible check on the postconditions.
"""
print(’i = %d, j = %d, x = %d’ % (i, j, pivot))
print(’arr[%d:%d] =’ % (first, j+1), \

arr[first:j+1], ’<=’, pivot)
print(’arr[%d:%d] =’ % (i, last), \

arr[i:last], ’>=’, pivot)
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a recursive quicksort

def recursive_quicksort(data, first, last, verbose=True):
"""
Sorts the array data in increasing order.
If verbose, then extra output is written.
"""
(i, j, pivot) = partition(data, first, last)
if verbose:

check_partition(data, first, last, i, j, pivot)
if j > first:

recursive_quicksort(data, first, j+1, verbose)
if i < last-1:

recursive_quicksort(data, i, last, verbose)

Important: first sort data[first:j+1].
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Converting Recursion into Iteration
a stack for the parameters of the calls

Recursion is executed via a stack.

For quicksort, we store first and last index
of the array to sort.

With every call we push (first, last) on the stack.

As long as the stack of indices is not empty:
1 pop the indices (first, last) from the stack
2 we partition the array A[first:last]
3 push (i, last) and then (first, j+1)
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running the iterative code

A = [31 93 49 37 56 95 74 59]
S = [(0, 8)]

i = 4, j = 3, x = 56
A[0:4] = [31 56 49 37] <= 56
A[4:8] = [93 95 74 59] >= 56

S = [(0, 4), (4, 8)]

i = 3, j = 1, x = 49
A[0:2] = [31 37] <= 49
A[3:4] = [56] >= 49

S = [(0, 2), (4, 8)]

i = 2, j = 0, x = 37
A[0:1] = [31] <= 37
A[2:2] = [] >= 37

S = [(4, 8)]
...
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an iterative quicksort

def iterative_quicksort(nbrs, verbose=True):
"""
The iterative version of quicksort
uses a stack of indices in nbrs.
"""
stk = []
stk.insert(0, (0, len(nbrs)))
while stk != []:

if verbose:
print(’S =’, stk)

(first, last) = stk.pop(0)
(i, j, pivot) = partition(nbrs, first, last)
if verbose:

check_partition(nbrs, first, last, i, j, pivot)
if i < last-1:

stk.insert(0, (i, last))
if j > first:

stk.insert(0, (first, j+1))
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Towers of Hanoi
moving a pile of disks
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Towers of Hanoi
the middle stage
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Towers of Hanoi
the last move
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rules of the game

Move a pile of disks from peg A to B:
1 no larger disk on top of smaller disk,
2 use peg C as intermediary location.

A GUI is just an interface to a program...
1 keep solution in a separate script,
2 GUI is primarily concerned with display.

We need a "get_next_move" function.
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inverting control in a loop

Consider the following pseudo code:

def f(n):
if n == 0: # base case

write result
else:

recursive call(s)

The recursive f controls the calls to write.

while True:
result = get_next();
if no result: break
write result

The pace of writing controls the computation.
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using stacks

The get_next() function
1 stores all current values of variables and parameters before

returning to the caller,
2 when called again, restores all values.

For the towers of Hanoi we will
1 first convert to an iterative solution,
2 then adjust to an inverted function.

Our data structures:

A = (’A’,range(1,n+1))
B = (’B’,[])
C = (’C’,[])
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a recursive solution, the base case

def hanoi(nbr, apl, bpl, cpl, k, move):
"""
Moves nbr disks from apl to bpl, cpl is auxiliary.
The recursion depth is counted by k,
move counts the number of moves.
Writes the state of the piles after each move.
Returns the number of moves.
"""
if nbr == 1:

# move disk from A to B
bpl[1].insert(0, apl[1].pop(0))
write(k, move+1, nbr, apl, bpl, cpl)
return move+1
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a recursive solution, the general case

def hanoi(nbr, apl, bpl, cpl, k, move):

if nbr == 1:

else:
# move nbr-1 disks from A to C, B is auxiliary
move = hanoi(nbr-1, apl, cpl, bpl, k+1, move)
# move nbr-th disk from A to B
bpl[1].insert(0, apl[1].pop(0))
write(k, move+1, nbr, apl, bpl, cpl)
# move nbr-1 disks from C to B, A is auxiliary
move = hanoi(nbr-1, cpl, bpl, apl, k+1, move+1)
return move
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an iterative solution for the towers of Hanoi

A stack of arguments of function calls:

stk = [(n, ’A’, ’B’, ’C’, k)] # symbols on the stack
while len(stk) > 0:

top = stk.pop(0)

The recursive code:

if n == 1:
move disk from A to B

else:
move n-1 disks from A to C, B is auxiliary
move n-th disk from A to B
move n-1 disks from C to B, A is auxiliary

Not only arguments of function calls go on the stack!
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moves on the stack

Observe that B[1].insert(0,A[1].pop(0)) is performed in both
the base case and the general case.

In all cases, we move a disk from A to B,
but only in the base case can we execute directly,
in the general case we must store the move.

A move is stores as a string on the stack:

top = stk.pop(0)
if isinstance(top, str):

eval(top)

The move is stores as B[1].insert(0,A[1].pop(0))
ready for execution, triggered by eval.
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iterative_hanoi, part I

def iterative_hanoi(nbr, A, B, C, k):
"""
The iterative version uses a stack of function calls.
On the stack are symbols for the piles,
not the actual piles!
"""
stk = [(nbr, ’A’, ’B’, ’C’, k)]
cnt = 0
while len(stk) > 0:

top = stk.pop(0)
if isinstance(top, str):

eval(top)
if top[0] != ’w’:

cnt = cnt + 1 # a move, not a write
else:
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iterative_hanoi, part II

else:
(nbr, sa, sb, sc, k) = top
move = sb + ’[1].insert(0,’ + sa + ’[1].pop(0))’
if nbr == 1:

# move disk from A to B
eval(move)
cnt = cnt + 1
write(k, cnt, nbr, A, B, C)

else: # observe that we swap the order of moves!
# move nbr-1 disks from C to B, A is auxiliary
stk.insert(0, (nbr-1, sc, sb, sa, k+1))
# move nbr-th disk from A to B
stk.insert(0, ("write(%d,cnt,%d,A,B,C)" % (k, nbr)))
stk.insert(0, move)
# move nbr-1 disks from A to C, B is auxiliary
stk.insert(0, (nbr-1, sa, sc, sb, k+1))
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inverting hanoi
def get_next_move(stk, A, B, C):

"""
Computes the next move, changes the stack stk,
and returns the next move to the calling routine.
"""

def inverted_hanoi(nbr, apl, bpl, cpl, k):
"""
This inverted version of the towers of Hanoi gives
the control to the writing of the piles.
"""
stk = [(nbr, ’A’, ’B’, ’C’, k)]
cnt = 0
while True:

move = get_next_move(stk, apl, bpl, cpl)
if move == ’’:

break
cnt = cnt + 1
pre = ’after move %d :’ % cnt
write_piles(pre, apl, bpl, cpl)
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body of get_next_move
while len(stk) > 0:

top = stk.pop(0)
if isinstance(top, str):

eval(top)
return top

else:
(nbr, sap, sbp, scp, k) = top
move = sbp + ’[1].insert(0,’ + sap + ’[1].pop(0))’
if nbr == 1:

eval(move) # move disk from A to B
return move

else: # observe that we swap the order of moves!
# move nbr-1 disks from C to B, A is auxiliary
stk.insert(0, (nbr-1, scp, sbp, sap, k+1))
# move nbr-th disk from A to B
stk.insert(0, move)
# move nbr-1 disks from A to C, B is auxiliary
stk.insert(0, (nbr-1, sap, scp, sbp, k+1))

return ’’
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Exercises

1 Give Python code to enumerate all permutations of an array
without making a copy of the array.

2 Two natural numbers m and n are input to the Ackermann
function A. For m = 0: A(0,n) = n + 1, for m > 0:
A(m,0) = A(m − 1,1), and for m > 0, n > 0:
A(m,n) = A(m − 1,A(m,n − 1)).

1 Give a recursive Python function for A.
2 Turn the recursive function into an iterative one.

3 Write an iterative version of the GUI to draw Hilbert’s space filling
curves.
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