
Running Cython and Vectorization
1 Getting Started with Cython

overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

MCS 275 Lecture 41
Programming Tools and File Management

Jan Verschelde, 21 April 2017

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 1 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 2 / 49

what is Cython?

Cython is a programming language based on Python:
with static type declarations to achieve the speed of C,
to write optimized code and to interface with C libraries.

Proceedings of the 8th Python in Science Conference (SciPy 2009):
S. Behnel, R.W. Bradshaw, D.S. Seljebotn: Cython tutorial.
In SciPy 2009, pages 4-14, 2009.
D.S. Seljebotn: Fast numerical computations with Cython.
In SciPy 2009, pages 15-23, 2009.

Version 0.25.2 (2016-12-08) is available via cython.org.

Demonstrations in this lecture were done on a MacBook Pro.
On Windows, Cython works well in cygwin.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 3 / 49

compilation and static typing

Python is interpreted and dynamically typed:
instructions are parsed, translated, and executed one-by-one,
types of objects are determined during assignment.

Cython code is compiled: a program is first parsed entirely,
then translated into machine executable code, eventually optimized,
before its execution.

Static type declarations allow for
translations into very efficient C code, and
direct manipulations of objects in external libraries.

Cython is a Python compiler: it compiles regular Python code.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 4 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 5 / 49

hello world with Cython

We can compile Cython code in two ways:

1 using distutils to build an extension of Python;
2 run the cython command-line utility to make a .c file

and then compile this file.

We illustrate the two ways with a simple say_hello method.

Cython code has the extension .pyx. The file hello.pyx:

def say_hello(name):
"""
Prints hello followed by the name.
"""
print("hello", name)

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 6 / 49

using distutils

The file hello_setup.py has content

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

EXT_MODULES = [Extension("hello", ["hello.pyx"])]

setup(
name = ’hello world’ ,
cmdclass = {’build_ext’: build_ext},
ext_modules = EXT_MODULES

)

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 7 / 49

building a Cython module

At the command prompt we type

$ python3 hello_setup.py build_ext --inplace

and makes the shared object file hello.cpython-36m-darwin.so
which we can rename into hello.so.

$ python3 hello_setup.py build_ext --inplace
running build_ext
cythoning hello.pyx to hello.c
building ’hello’ extension
creating build
creating build/temp.macosx-10.6-intel-3.6
/usr/bin/clang -fno-strict-aliasing -Wsign-compare -fno-com
/usr/bin/clang -bundle -undefined dynamic_lookup -arch i386
$

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 8 / 49

testing the Cython module

With the --inplace option, the shared object file
is placed in the current directory.

We import the function say_hello of the module hello:

$ python3
Python 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more i
>>> from hello import say_hello
>>> say_hello("there")
hello there
>>>

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 9 / 49

the command line cython
$ which cython
/Library/Frameworks/Python.framework/Versions/3.6/bin/cython
$ cython hello.pyx
$ ls -lt hello.c
-rw-r--r-- 1 jan staff 77731 Apr 20 19:07 hello.c
$

The makefile contains the entry
hello_cython:

cython hello.pyx
/usr/bin/clang -c hello.c -o hello.o \

-fno-strict-aliasing -fno-common -dynamic -arch i386 -arch x86_64 \
-g -O2 -DNDEBUG -g -O3 \
-I/Library/Frameworks/Python.framework/Versions/3.6/include/python3.6m

/usr/bin/clang -bundle -undefined dynamic_lookup -arch i386 \
-arch x86_64 -g hello.o -o hello.so

Typing hello_cython executes cython, compiles the hello.c,
and links the object hello.o into the shared object hello.so.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 10 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 11 / 49

approximating π

For a computational intensive, yet simple computation, consider

π

4
=

∫ 1

0

√
1 − x2 dx

approximated with the composite Trapezoidal rule:

∫ 1

0

√
1 − x2 dx ≈ 1

n


1

2
+

n−1∑
i=1

√
1 −

(
i
n

)2

 .

We let n = 107 and make 10,000,000 square root function calls.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 12 / 49

the Python function integral4pi
from math import sqrt # do not import in circle !!!

def circle(xvl):
"""
Returns the y corresponding to xvl
on the upper half of the unit circle.
"""
return sqrt(1-xvl**2)

def integral4pi(nbvals):
"""
Approximates Pi with the trapezoidal
rule with nbvals subintervals of [0,1].
"""
step = 1.0/nbvals
result = (circle(0)+circle(1))/2
for i in range(nbvals):

result += circle(i*step)
return 4*result*step

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 13 / 49

timing the execution (script continued)
def main():

"""
Does the timing of integral4pi.
"""
from time import clock
start_time = clock()
approx = integral4pi(10**7)
stop_time = clock()
print ’pi =’, approx
elapsed = stop_time - start_time
print ’elapsed time = %.3f seconds’ % elapsed

main()

Running this script on a 3.1 GHz Intel Core i7 MacBook Pro:

$ python3 integral4pi.py
pi = 3.1415930535527115
elapsed time = 3.464 seconds
$

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 14 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 15 / 49

the script integral4pi_typed.pyx

from math import sqrt

def circle(double x):
return sqrt(1-x**2)

def integral4pi(int n):
cdef int i
cdef double h, r
h = 1.0/n
r = (circle(0)+circle(1))/2
for i in range(n):

r += circle(i*h)
return 4*r*h

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 16 / 49

using distutils

We use distutils to build the module integral4pi_typed.
To build, we define integral4pi_typed_setup.py:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("integral4pi_typed",
["integral4pi_typed.pyx"])]

setup(
name = ’integral approximation for pi’ ,
cmdclass = {’build_ext’: build_ext},
ext_modules = ext_modules

)

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 17 / 49

building the code

$ python3 integral4pi_typed_setup.py build_ext --inplace
running build_ext
cythoning integral4pi_typed.pyx to integral4pi_typed.c
building ’integral4pi_typed’ extension
/usr/bin/clang -fno-strict-aliasing -Wsign-compare
-fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall
-Wstrict-prototypes -arch i386 -arch x86_64 -g
-I/Library/Frameworks/Python.framework/Versions/3.6/include
-c integral4pi_typed.c
-o build/temp.macosx-10.6-intel-3.6/integral4pi_typed.o
/usr/bin/clang -bundle -undefined dynamic_lookup
-arch i386 -arch x86_64
-g build/temp.macosx-10.6-intel-3.6/integral4pi_typed.o
-o /Users/jan/Courses/MCS275/Spring17/Lec41/
integral4pi_typed.cpython-36m-darwin.so
$

The setup tools show us the compilation instructions.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 18 / 49

calling integral4pi of integral4pi_typed

from time import clock
from integral4pi_typed import integral4pi

START_TIME = clock()
APPROX = integral4pi(10**7)
STOP_TIME = clock()
print ’pi =’, APPROX
ELAPSED = STOP_TIME - START_TIME
print ’elapsed time = %.3f seconds’ % ELAPSED

Running the script:

$ python3 integral4pi_typed_apply.py
pi = 3.1415930535527115
elapsed time = 0.918 seconds
$

The code runs more than three times as fast as the original Python
version (3.464 seconds).

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 19 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 20 / 49

declaring C-style functions

To avoid the construction of float objects around function calls,
we declare a C-style function:

from math import sqrt

cdef double circle(double x) except *:
return sqrt(1-x**2)

The rest of the script remains the same.
To compile integral4pi_cdeffun.pyx, we define the file
integral4pi_cdeffun_setup.py and build with

$ python3 integral4pi_cdeffun_setup.py build_ext --inplace

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 21 / 49

calling integral4pi of integral4pi_cdeffun

Similar as with integral4pi_typed_apply.py
we define the script integral4pi_cdeffun_apply.py.

$ python3 integral4pi_cdeffun_apply.py
pi = 3.1415930535527115
elapsed time = 0.583 seconds
$

What have we achieved so far is summarized below:

elapsed seconds speedup
original Python 3.464 1.00

Cython with cdef 0.918 3.77
cdef function 0.583 5.94

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 22 / 49

calling external C functions

The main cost is calling sqrt 10,000,000 times...

Instead of using the sqrt of the Python math module,
we can directly use the sqrt of the C math library:

cdef extern from "math.h":
double sqrt(double)

The rest of the script remains the same.
To compile integral4pi_extcfun.pyx, we define the file
integral4pi_extcfun_setup.py and build with

$ python3 integral4pi_extcfun_setup.py build_ext --inplace

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 23 / 49

calling integral4pi of integral4pi_extcfun

Similar as with integral4pi_typed_apply.py
we define the script integral4pi_extcfun_apply.py.

$ python3 integral4pi_extcfun_apply.py
pi = 3.1415930535527115
elapsed time = 0.041 seconds
$

This gives a nice speedup, summarized below:

elapsed seconds speedup
original Python 3.464 1.00

Cython with cdef 0.918 3.77
cdef function 0.583 5.94

external C function 0.041 84.49

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 24 / 49

native C code
#include <stdio.h>
#include <math.h>
#include <time.h>

double circle (double x)
{

return sqrt(1-x*x);
}

double integral4pi (int n)
{

int i;
double h = 1.0/n;
double r = (circle(0)+circle(1))/2;

for(i=0; i<n; i++)
r += circle(i*h);

return 4*r*h;
}

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 25 / 49

the main function

int main (void)
{

int n = 10000000;
clock_t start_time,stop_time;

start_time = clock();
double a = integral4pi(n);
stop_time = clock();

printf("pi = %.15f\n",a);
printf("elapsed time = %.3f seconds\n",

(double) (stop_time-start_time)/CLOCKS_PER_SEC);

return 0;
}

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 26 / 49

compiling and running

$ /usr/bin/clang -O3 integral4pi_native.c \
-o /tmp/integral4pi_native

$ /tmp/integral4pi_native
pi = 3.141593053552711
elapsed time = 0.023 seconds
$

elapsed seconds speedup
original Python 3.464 1.00

Cython with cdef 0.918 3.77
cdef function 0.583 5.94

external C function 0.041 84.49
native C code 0.023 150.61

We achieve double digit speedups.
The Cython code which calls the C sqrt takes almost double the time
of the native C code.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 27 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 28 / 49

visualizing living cells

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 29 / 49

simulating cellular growth

The game of life is a discovery of John Conway.

Consider a rectangular grid of cells with rules:
1 An empty cell is born when it has 3 neighbors.
2 A living cell can either die or survive, as follows:

1 die by loneliness, if the cell has one or no neighbors;
2 die by overpopulation, if the cell has ≥ 4 neighbors;
3 survive, if the cell has two or three neighbors.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 30 / 49

design of the code

Three ingredients:
1 The rectangular grid is represented by a NumPy matrix A

� of integers: Ai,j ∈ {0, 1},
� Ai,j = 0: cell (i, j) is dead,
� Ai,j = 1: cell (i, j) is alive.

2 We update the matrix applying the rules,
running over all pairs of indices (i , j).

3 We use matplotlib for making a spy plot of the nonzeroes.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 31 / 49

the main function

def main():
"""
Generates a random matrix and
applies the rules for Conway’s
game of life.
"""
ratio = 0.2 # ratio of nonzeroes
dim = input(’give the dimension : ’)
alive = np.random.rand(dim, dim)
alive = np.matrix(alive < ratio, int)
for i in xrange(10*dim):

spm = sparse.coo_matrix(alive)
plot(spm.row, spm.col, ’r.’, \

axis=[-1, dim, -1, dim], \
title=’stage %d’ % i)

alive = update(alive)

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 32 / 49

applying the rules

def update(alive):
"""
Applies the rules of Conway’s game of life.
"""
result = np.zeros(alive.shape, int)
for i in range(0, alive.shape[0]):

for j in range(0, alive.shape[1]):
nbn = neighbors(alive, i, j)
if alive[i, j] == 1:

if((nbn < 2) or (nbn > 3)):
result[i, j] = 0

else:
result[i, j] = 1

else:
if(nbn == 3):

result[i, j] = 1
return result

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 33 / 49

counting live neighbors

def neighbors(alive, i, j):
"""
Returns the number of cells alive
next to alive[i, j].
"""
cnt = 0
if i > 0:

if alive[i-1, j]:
cnt = cnt + 1

if(j > 0):
if alive[i-1, j-1]:

cnt = cnt + 1
if(j < alive.shape[1]-1):

if alive[i-1, j+1]:
cnt = cnt + 1

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 34 / 49

counting live neighbors continued

if(i < alive.shape[0]-1):
if alive[i+1, j]:

cnt = cnt + 1
if(j > 0):

if alive[i+1, j-1]:
cnt = cnt + 1

if(j < alive.shape[1]-1):
if alive[i+1, j+1]:

cnt = cnt + 1
if(j > 0):

if alive[i, j-1]:
cnt = cnt + 1

if(j < alive.shape[1]-1):
if alive[i, j+1]:

cnt = cnt + 1
return cnt

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 35 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 36 / 49

performance issues

The straightforward code does not work well
on a MacBook when the dimension gets at n = 300.

Reasons for the problems with performance:
Traversals through the matrix with double for loops in Python:
incrementing loop counters is expensive.
The loop counts i and j are Python objects.

In counting the neighbors we access not only the (i , j)-th data
element, but also (i − 1, j), (i + 1, j), (i , j − 1), and (i , j + 1).
In the row or column oriented storing of the matrix, getting access
to respectively (i − 1, j), (i + 1, j) or (i , j − 1), (i , j + 1) means
accessing n elements before or after the (i , j)-th element.

Vectorization reorganizes the counting of the live neighbors
and the application of the rules.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 37 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 38 / 49

vectorizing the neighbor count

For every cell (i , j) in the matrix we need to count
the number of neighbors that are alive.

We need to avoid to access at the same time the left, right, upper and
lower neighbors because of the way matrices are stored.

Idea: to count the right neighbors of live cells
add to the matrix the same matrix shifted one column.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 39 / 49

counting the right live neighbors
>>> import numpy as np
>>> A = np.random.rand(5,5)
>>> A = np.matrix(A < 0.3,int); A
matrix([[1, 1, 1, 1, 1],

[1, 1, 0, 0, 1],
[0, 0, 0, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> B = np.copy(A[:,+1:])
>>> B
array([[1, 1, 1, 1],

[1, 0, 0, 1],
[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 0, 0, 0]])

>>> A[:,:-1] = np.copy(A[:,:-1]) + B
>>> A
matrix([[2, 2, 2, 2, 1],

[2, 1, 0, 1, 1],
[0, 0, 0, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 0, 0, 0]])

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 40 / 49

the script game_neighbors.py

def neighbor_count_matrix(alive):
"""
Returns a matrix counting the
number of live neighbors.
"""
acopy = np.copy(alive)
result = np.copy(alive)
left = np.copy(result[:, :-1]) # omit last column
right = np.copy(result[:, +1:]) # omit first column
result[:, +1:] = np.copy(result[:, +1:]) + left
result[:, :-1] = np.copy(result[:, :-1]) + right
upper = np.copy(result[:-1, :]) # omit last row
lower = np.copy(result[+1:, :]) # omit last column
result[+1:, :] = np.copy(result[+1:, :]) + upper
result[:-1, :] = np.copy(result[:-1, :]) + lower
result = result - acopy
return result

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 41 / 49

the main test

def main():
"""
Test on neighbor count.
"""
dim = 8
ratio = 0.2
alive = np.random.rand(dim, dim)
alive = np.matrix(alive < ratio, int)
count = neighbor_count_matrix(alive)
print ’cells alive\n’, alive
print ’vectorized neighbor count\n’, count
orgcnt = neighbor_count(alive)
print ’original neighbor count\n’, orgcnt
print ’equality check :’
print np.equal(count, orgcnt)
print sum(sum(np.equal(count, orgcnt)))

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 42 / 49

Running Cython and Vectorization

1 Getting Started with Cython
overview
hello world with Cython

2 Numerical Integration
experimental setup
adding type declarations
cdef functions & calling external functions

3 Vectorization
the game of life of John Conway
performance issues
vectorizing the neighbor count
vectorizing the rules

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 43 / 49

the where method

Converting a 0/1 matrix into a Boolean matrix:

>>> A = np.random.rand(4,4)
>>> A = np.matrix(A < 0.5, int)
>>> A
matrix([[0, 1, 1, 1],

[0, 1, 0, 1],
[1, 1, 1, 0],
[0, 0, 1, 1]])

>>> B = np.where(A > 0, True, False)
>>> B
matrix([[False, True, True, True],

[False, True, False, True],
[True, True, True, False],
[False, False, True, True]], dtype=bool)

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 44 / 49

die of loneliness
>>> import numpy as np
>>> A = np.random.rand(5,5)
>>> A = np.matrix(A < 0.4,int)
>>> A
matrix([[0, 0, 0, 0, 0],

[1, 1, 0, 0, 1],
[1, 0, 0, 1, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])

>>> from game_neighbors import neighbor_count_matrix
>>> B = neighbor_count_matrix(A)
>>> B
array([[2, 2, 1, 1, 1],

[2, 2, 2, 2, 1],
[2, 3, 3, 2, 3],
[1, 1, 2, 2, 3],
[0, 0, 1, 2, 1]])

>>> lonely = np.where(B < 2,0,A); lonely
array([[0, 0, 0, 0, 0],

[1, 1, 0, 0, 0],
[1, 0, 0, 1, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]])

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 45 / 49

the script game_rules.py

import numpy as np
from game_neighbors import neighbor_count_matrix

def update_matrix(alive, count):
"""
The vectorized version of update.
"""
starve = np.where(count > 3, 0, alive)
lonely = np.where(count < 2, 0, starve)
return np.where(count == 3, 1, lonely)

To test, we compare the update methods.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 46 / 49

testing the vectorized rules

def main():
"""
Test on the rules, comparing the original
with the vectorized version of the rules.
"""
dim = 10
ratio = 0.3
alive = np.random.rand(dim, dim)
alive = np.matrix(alive < ratio, int)
count = neighbor_count_matrix(alive)
first_update = update(alive, count)
print ’live cells :\n’, alive
print ’apply original rules :\n’, first_update
second_update = update_matrix(alive, count)
print ’apply matrix rules :\n’, second_update
print ’equality check :’
print np.equal(first_update, second_update)
print sum(sum(np.equal(first_update, second_update)))

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 47 / 49

the vectorized game

The script game_vector.py has a different update:

import numpy as np
import matplotlib as plt
from scipy import sparse

from game_neighbors import neighbor_count_matrix
from game_rules import update_matrix

def update(alive):
"""
Applies the rules of Conway’s game of life.
"""
counts = neighbor_count_matrix(alive)
return update_matrix(alive, counts)

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 48 / 49

Summary + Exercises

Compiling modified Python code with Cython we obtain significant
speedups and performance close to native C code.
Compared to vectorization we can often keep the same logic.
Random walks and cellular automata simulate
and model complicated dynamical systems.
Vectorization is often critical for good performance.

1 Read the Cython tutorial and learn how to extend the function for
the composite trapezoidal rule so we may call the function given
as argument the integrand function.

2 Use the canvas of Tkinter for a GUI to make the game of life.
Allow the user to define configurations of living cells via mouse
clicks on the canvas.

3 Apply vectorization to your GUI. Compare the performance of your
versions with and without factorization.

Programming Tools (MCS 275) running Cython and vectorization L-41 21 April 2017 49 / 49

