
MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 Lecture 36
Programming Tools and File Management

Jan Verschelde, 14 April 2008

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Algorithms and Data Structures
programming in Python revisited

Niklaus Wirth: programs = algorithms + data structures

Three basic control structures in any algorithm:

1. sequence of statements

2. conditional statement: if else

3. iteration: while and for loop

For every control structure,
we have a matching data structure:

control structures data structures
1 sequence tuple
2 if else dictionary
3 while / for list

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Programs are Data Transformations
tuples as sequences manipulated by functions

All data are sequences of bits, or bit tuples.

Swapping values:

>>> a = 1
>>> b = 2
>>> (b,a) = (a,b)
>>> b
1
>>> a
2

Functions take sequences of arguments on input
and return sequences on output.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Programs are Data Transformations
tuples as sequences manipulated by functions

All data are sequences of bits, or bit tuples.

Swapping values:

>>> a = 1
>>> b = 2
>>> (b,a) = (a,b)
>>> b
1
>>> a
2

Functions take sequences of arguments on input
and return sequences on output.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Programs are Data Transformations
tuples as sequences manipulated by functions

All data are sequences of bits, or bit tuples.

Swapping values:

>>> a = 1
>>> b = 2
>>> (b,a) = (a,b)
>>> b
1
>>> a
2

Functions take sequences of arguments on input
and return sequences on output.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Programs are Data Transformations
tuples as sequences manipulated by functions

All data are sequences of bits, or bit tuples.

Swapping values:

>>> a = 1
>>> b = 2
>>> (b,a) = (a,b)
>>> b
1
>>> a
2

Functions take sequences of arguments on input
and return sequences on output.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Storing Conditions
dictionaries and if else statements

We can represent an if tt else statement

>>> import time
>>> hour = time.localtime()[3]
>>> if hour < 12:
... print ’good morning’
... else:
... print ’good afternoon’
...
good afternoon

via a dictionary:
>>> d = { True:’good morning’,
... False : ’good afternoon’}
>>> d[hour<12]
’good afternoon’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Storing Conditions
dictionaries and if else statements

We can represent an if tt else statement

>>> import time
>>> hour = time.localtime()[3]
>>> if hour < 12:
... print ’good morning’
... else:
... print ’good afternoon’
...
good afternoon

via a dictionary:
>>> d = { True:’good morning’,
... False : ’good afternoon’}
>>> d[hour<12]
’good afternoon’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Loops and Lists
storing the results of a for loop

Printing all lower case characters:

>>> for i in range(ord(’a’),ord(’z’)):
... print chr(i)

A list of all lower case characters:

>>> L = range(ord(’a’),ord(’z’))
>>> map(chr,L)

map() returns a list of the results
of applying a function to a sequence of arguments.

The while statement combines for with if else:
conditional iteration.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Loops and Lists
storing the results of a for loop

Printing all lower case characters:

>>> for i in range(ord(’a’),ord(’z’)):
... print chr(i)

A list of all lower case characters:

>>> L = range(ord(’a’),ord(’z’))
>>> map(chr,L)

map() returns a list of the results
of applying a function to a sequence of arguments.

The while statement combines for with if else:
conditional iteration.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Loops and Lists
storing the results of a for loop

Printing all lower case characters:

>>> for i in range(ord(’a’),ord(’z’)):
... print chr(i)

A list of all lower case characters:

>>> L = range(ord(’a’),ord(’z’))
>>> map(chr,L)

map() returns a list of the results
of applying a function to a sequence of arguments.

The while statement combines for with if else:
conditional iteration.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Loops and Lists
storing the results of a for loop

Printing all lower case characters:

>>> for i in range(ord(’a’),ord(’z’)):
... print chr(i)

A list of all lower case characters:

>>> L = range(ord(’a’),ord(’z’))
>>> map(chr,L)

map() returns a list of the results
of applying a function to a sequence of arguments.

The while statement combines for with if else:
conditional iteration.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Loops and Lists
storing the results of a for loop

Printing all lower case characters:

>>> for i in range(ord(’a’),ord(’z’)):
... print chr(i)

A list of all lower case characters:

>>> L = range(ord(’a’),ord(’z’))
>>> map(chr,L)

map() returns a list of the results
of applying a function to a sequence of arguments.

The while statement combines for with if else:
conditional iteration.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Loops and Lists
storing the results of a for loop

Printing all lower case characters:

>>> for i in range(ord(’a’),ord(’z’)):
... print chr(i)

A list of all lower case characters:

>>> L = range(ord(’a’),ord(’z’))
>>> map(chr,L)

map() returns a list of the results
of applying a function to a sequence of arguments.

The while statement combines for with if else:
conditional iteration.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

List Comprehensions
defining lists in a short way

Instead of map(), filter(), etc... (eventually with
lambda functions), list comprehensions provide a shorter
way to create lists:

To sample integer points on the parabola y � x 2:

>>> [(x,x**2) for x in range(0,3)]
[(0, 0), (1, 1), (2, 4)]

Generating three random numbers:

>>> from random import uniform
>>> L = [uniform(0,1) for i in range(0,3)]

>>> [’%.3f’ % x for x in L]
[’0.843’, ’0.308’, ’0.272’]

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

List Comprehensions
defining lists in a short way

Instead of map(), filter(), etc... (eventually with
lambda functions), list comprehensions provide a shorter
way to create lists:

To sample integer points on the parabola y � x 2:

>>> [(x,x**2) for x in range(0,3)]
[(0, 0), (1, 1), (2, 4)]

Generating three random numbers:

>>> from random import uniform
>>> L = [uniform(0,1) for i in range(0,3)]

>>> [’%.3f’ % x for x in L]
[’0.843’, ’0.308’, ’0.272’]

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

List Comprehensions
defining lists in a short way

Instead of map(), filter(), etc... (eventually with
lambda functions), list comprehensions provide a shorter
way to create lists:

To sample integer points on the parabola y � x 2:

>>> [(x,x**2) for x in range(0,3)]
[(0, 0), (1, 1), (2, 4)]

Generating three random numbers:

>>> from random import uniform
>>> L = [uniform(0,1) for i in range(0,3)]

>>> [’%.3f’ % x for x in L]
[’0.843’, ’0.308’, ’0.272’]

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

List Comprehensions
defining lists in a short way

Instead of map(), filter(), etc... (eventually with
lambda functions), list comprehensions provide a shorter
way to create lists:

To sample integer points on the parabola y � x 2:

>>> [(x,x**2) for x in range(0,3)]
[(0, 0), (1, 1), (2, 4)]

Generating three random numbers:

>>> from random import uniform
>>> L = [uniform(0,1) for i in range(0,3)]

>>> [’%.3f’ % x for x in L]
[’0.843’, ’0.308’, ’0.272’]

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Persistent Data
storing information between executions

Data that is persistent outlives programs.

Objects constructed by a script are lost
as soon as the script ends.

Two extremes to make data persistent:

1. files: store string representations,

2. MySQL: store data in tables in a database.

Intermediate solution: DBM files.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Persistent Data
storing information between executions

Data that is persistent outlives programs.

Objects constructed by a script are lost
as soon as the script ends.

Two extremes to make data persistent:

1. files: store string representations,

2. MySQL: store data in tables in a database.

Intermediate solution: DBM files.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Persistent Data
storing information between executions

Data that is persistent outlives programs.

Objects constructed by a script are lost
as soon as the script ends.

Two extremes to make data persistent:

1. files: store string representations,

2. MySQL: store data in tables in a database.

Intermediate solution: DBM files.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Persistent Data
storing information between executions

Data that is persistent outlives programs.

Objects constructed by a script are lost
as soon as the script ends.

Two extremes to make data persistent:

1. files: store string representations,

2. MySQL: store data in tables in a database.

Intermediate solution: DBM files.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Persistent Data
storing information between executions

Data that is persistent outlives programs.

Objects constructed by a script are lost
as soon as the script ends.

Two extremes to make data persistent:

1. files: store string representations,

2. MySQL: store data in tables in a database.

Intermediate solution: DBM files.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using DBM Files

DBM files are standard in the Python library.

$ python
>>> import anydbm
>>> libdb = anydbm.open(’library’,’c’)

opened a new dbm with read-write access (flag = ’c’)

>>> libdb[’0’] = str({’author’:’Rashi Gupta’,
... ’title’:’Making Use of Python’})

keys and values must be of type string

>>> libdb.keys()
[’0’]
>>> libdb.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}"]
$ ls

� library is a file in current directory.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using DBM Files

DBM files are standard in the Python library.

$ python
>>> import anydbm
>>> libdb = anydbm.open(’library’,’c’)

opened a new dbm with read-write access (flag = ’c’)

>>> libdb[’0’] = str({’author’:’Rashi Gupta’,
... ’title’:’Making Use of Python’})

keys and values must be of type string

>>> libdb.keys()
[’0’]
>>> libdb.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}"]
$ ls

� library is a file in current directory.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using DBM Files

DBM files are standard in the Python library.

$ python
>>> import anydbm
>>> libdb = anydbm.open(’library’,’c’)

opened a new dbm with read-write access (flag = ’c’)

>>> libdb[’0’] = str({’author’:’Rashi Gupta’,
... ’title’:’Making Use of Python’})

keys and values must be of type string

>>> libdb.keys()
[’0’]
>>> libdb.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}"]
$ ls

� library is a file in current directory.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using DBM Files

DBM files are standard in the Python library.

$ python
>>> import anydbm
>>> libdb = anydbm.open(’library’,’c’)

opened a new dbm with read-write access (flag = ’c’)

>>> libdb[’0’] = str({’author’:’Rashi Gupta’,
... ’title’:’Making Use of Python’})

keys and values must be of type string

>>> libdb.keys()
[’0’]
>>> libdb.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}"]
$ ls

� library is a file in current directory.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Adding Books to the Library
and selecting books using the key

>>> import anydbm
>>> mylib = anydbm.open(’library’,’c’)

>>> mylib.keys()
[’0’]
>>> mylib[’1’] = str({’author’:’S. Ceri et al.’,
... ’title’:’The Art and Craft of Computing’})
>>> mylib.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}",
"{’title’: ’The Art and Craft of Computing’, ’author’: ’S. Ceri et al.’}"]

Selecting the author of book with key 1:

>>> V = mylib.values()
>>> d = V[int(mylib.keys()[1])]
>>> eval(d)[’author’]
’S. Ceri et al.’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Adding Books to the Library
and selecting books using the key

>>> import anydbm
>>> mylib = anydbm.open(’library’,’c’)

>>> mylib.keys()
[’0’]
>>> mylib[’1’] = str({’author’:’S. Ceri et al.’,
... ’title’:’The Art and Craft of Computing’})
>>> mylib.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}",
"{’title’: ’The Art and Craft of Computing’, ’author’: ’S. Ceri et al.’}"]

Selecting the author of book with key 1:

>>> V = mylib.values()
>>> d = V[int(mylib.keys()[1])]
>>> eval(d)[’author’]
’S. Ceri et al.’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Adding Books to the Library
and selecting books using the key

>>> import anydbm
>>> mylib = anydbm.open(’library’,’c’)

>>> mylib.keys()
[’0’]
>>> mylib[’1’] = str({’author’:’S. Ceri et al.’,
... ’title’:’The Art and Craft of Computing’})
>>> mylib.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}",
"{’title’: ’The Art and Craft of Computing’, ’author’: ’S. Ceri et al.’}"]

Selecting the author of book with key 1:

>>> V = mylib.values()
>>> d = V[int(mylib.keys()[1])]
>>> eval(d)[’author’]
’S. Ceri et al.’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Adding Books to the Library
and selecting books using the key

>>> import anydbm
>>> mylib = anydbm.open(’library’,’c’)

>>> mylib.keys()
[’0’]
>>> mylib[’1’] = str({’author’:’S. Ceri et al.’,
... ’title’:’The Art and Craft of Computing’})
>>> mylib.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}",
"{’title’: ’The Art and Craft of Computing’, ’author’: ’S. Ceri et al.’}"]

Selecting the author of book with key 1:

>>> V = mylib.values()
>>> d = V[int(mylib.keys()[1])]
>>> eval(d)[’author’]
’S. Ceri et al.’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Adding Books to the Library
and selecting books using the key

>>> import anydbm
>>> mylib = anydbm.open(’library’,’c’)

>>> mylib.keys()
[’0’]
>>> mylib[’1’] = str({’author’:’S. Ceri et al.’,
... ’title’:’The Art and Craft of Computing’})
>>> mylib.values()
["{’title’: ’Making Use of Python’, ’author’: ’Rashi Gupta’}",
"{’title’: ’The Art and Craft of Computing’, ’author’: ’S. Ceri et al.’}"]

Selecting the author of book with key 1:

>>> V = mylib.values()
>>> d = V[int(mylib.keys()[1])]
>>> eval(d)[’author’]
’S. Ceri et al.’

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

DBM File Operations
an overview

Python code description
import anydbm load module anydbm
f = anydbm.open(’n’,’c’) create or open dbm

file with name n
f[’key’] = ’value’ assign value for key
value = f[’key’] load value for key
count = len(f) number of entries stored
found = f.has_key(’key’) see if entry for key
del f[’key’] remove entry for key
f.close() close dbm file

Typical use:
� every record in database has unique key
� values are dictionaries, stored as strings

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

A Data Type Set
object oriented design of data structures

Builtin data types offer
� storage: object data attributes,
� methods: object functional attributes.

Example: define a class Set.
A set is a list without duplicates.

>>> from class_set import *
>>> E = Set()
>>> E
{}

>>> A = Set(2,5,2)
>>> A
{2,5}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

A Data Type Set
object oriented design of data structures

Builtin data types offer
� storage: object data attributes,
� methods: object functional attributes.

Example: define a class Set.
A set is a list without duplicates.

>>> from class_set import *
>>> E = Set()
>>> E
{}

>>> A = Set(2,5,2)
>>> A
{2,5}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

A Data Type Set
object oriented design of data structures

Builtin data types offer
� storage: object data attributes,
� methods: object functional attributes.

Example: define a class Set.
A set is a list without duplicates.

>>> from class_set import *
>>> E = Set()
>>> E
{}

>>> A = Set(2,5,2)
>>> A
{2,5}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

A Data Type Set
object oriented design of data structures

Builtin data types offer
� storage: object data attributes,
� methods: object functional attributes.

Example: define a class Set.
A set is a list without duplicates.

>>> from class_set import *
>>> E = Set()
>>> E
{}

>>> A = Set(2,5,2)
>>> A
{2,5}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

A Data Type Set
object oriented design of data structures

Builtin data types offer
� storage: object data attributes,
� methods: object functional attributes.

Example: define a class Set.
A set is a list without duplicates.

>>> from class_set import *
>>> E = Set()
>>> E
{}

>>> A = Set(2,5,2)
>>> A
{2,5}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Incremental Design of a Class
first constructor and string representation

class Set:
"""
A set is a list without duplicates.
"""

def __init__(self,*elements):
"""
Turns a sequence of arguments in
elements into a set.
"""

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Incremental Design of a Class
first constructor and string representation

class Set:
"""
A set is a list without duplicates.
"""

def __init__(self,*elements):
"""
Turns a sequence of arguments in
elements into a set.
"""

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Incremental Design of a Class
first constructor and string representation

class Set:
"""
A set is a list without duplicates.
"""

def __init__(self,*elements):
"""
Turns a sequence of arguments in
elements into a set.
"""

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Code for the Constructor
in the function __init__

def __init__(self,*elements):
"""
Turns a sequence of arguments in
elements into a set.
"""
self.s = []
for e in elements:

if not e in self.s:
self.s.append(e)

def __repr__(self):
"""
The string representation defines
the set representation.
"""
return str(self)

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Code for the Constructor
in the function __init__

def __init__(self,*elements):
"""
Turns a sequence of arguments in
elements into a set.
"""
self.s = []
for e in elements:

if not e in self.s:
self.s.append(e)

def __repr__(self):
"""
The string representation defines
the set representation.
"""
return str(self)

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Code for the Constructor
in the function __init__

def __init__(self,*elements):
"""
Turns a sequence of arguments in
elements into a set.
"""
self.s = []
for e in elements:

if not e in self.s:
self.s.append(e)

def __repr__(self):
"""
The string representation defines
the set representation.
"""
return str(self)

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Defining the String Representation
in the function __str__

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""
n = len(self.s)-1

if n < 0:
r = ’{}’

else:
r = ’{’
for i in range(0,n):

r = r + str(self.s[i]) + ’,’

r = r + str(self.s[n]) + ’}’
return r

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Defining the String Representation
in the function __str__

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""
n = len(self.s)-1

if n < 0:
r = ’{}’

else:
r = ’{’
for i in range(0,n):

r = r + str(self.s[i]) + ’,’

r = r + str(self.s[n]) + ’}’
return r

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Defining the String Representation
in the function __str__

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""
n = len(self.s)-1

if n < 0:
r = ’{}’

else:
r = ’{’
for i in range(0,n):

r = r + str(self.s[i]) + ’,’

r = r + str(self.s[n]) + ’}’
return r

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Defining the String Representation
in the function __str__

def __str__(self):
"""
Returns a string representation
of a set as { elements }.
"""
n = len(self.s)-1

if n < 0:
r = ’{}’

else:
r = ’{’
for i in range(0,n):

r = r + str(self.s[i]) + ’,’

r = r + str(self.s[n]) + ’}’
return r

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Pickled Objects
mapping data structures to serial strings

Main limitation of DBM files:
� data stored under a key must be a string.

The str and eval works for dictionaries, but not for
class instances. Recreating objects from standard string
representations is in general not possible.

Serialization is the conversation of objects to strings.
Arbitrarily data structures in memory are mapped to a
serial string form.

The pickle module is standard in Python.
Its C implementation cPickle is more efficient.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Pickled Objects
mapping data structures to serial strings

Main limitation of DBM files:
� data stored under a key must be a string.

The str and eval works for dictionaries, but not for
class instances. Recreating objects from standard string
representations is in general not possible.

Serialization is the conversation of objects to strings.
Arbitrarily data structures in memory are mapped to a
serial string form.

The pickle module is standard in Python.
Its C implementation cPickle is more efficient.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Pickled Objects
mapping data structures to serial strings

Main limitation of DBM files:
� data stored under a key must be a string.

The str and eval works for dictionaries, but not for
class instances. Recreating objects from standard string
representations is in general not possible.

Serialization is the conversation of objects to strings.
Arbitrarily data structures in memory are mapped to a
serial string form.

The pickle module is standard in Python.
Its C implementation cPickle is more efficient.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Pickled Objects
mapping data structures to serial strings

Main limitation of DBM files:
� data stored under a key must be a string.

The str and eval works for dictionaries, but not for
class instances. Recreating objects from standard string
representations is in general not possible.

Serialization is the conversation of objects to strings.
Arbitrarily data structures in memory are mapped to a
serial string form.

The pickle module is standard in Python.
Its C implementation cPickle is more efficient.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using cPickle
to store sets

$ python
>>> from class_set import *
>>> A = Set(’a’,3,Set(3,’five’))
>>> import cPickle
>>> setdb = open(’oursets’,’w’)
>>> cPickle.dump(A,setdb)

oursets is a file. A new Python session:

$ python
>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> S = cPickle.load(f)
>>> S
{a,3,{3,five}}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using cPickle
to store sets

$ python
>>> from class_set import *
>>> A = Set(’a’,3,Set(3,’five’))
>>> import cPickle
>>> setdb = open(’oursets’,’w’)
>>> cPickle.dump(A,setdb)

oursets is a file. A new Python session:

$ python
>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> S = cPickle.load(f)
>>> S
{a,3,{3,five}}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using cPickle
to store sets

$ python
>>> from class_set import *
>>> A = Set(’a’,3,Set(3,’five’))
>>> import cPickle
>>> setdb = open(’oursets’,’w’)
>>> cPickle.dump(A,setdb)

oursets is a file. A new Python session:

$ python
>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> S = cPickle.load(f)
>>> S
{a,3,{3,five}}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using cPickle
to store sets

$ python
>>> from class_set import *
>>> A = Set(’a’,3,Set(3,’five’))
>>> import cPickle
>>> setdb = open(’oursets’,’w’)
>>> cPickle.dump(A,setdb)

oursets is a file. A new Python session:

$ python
>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> S = cPickle.load(f)
>>> S
{a,3,{3,five}}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Using cPickle
to store sets

$ python
>>> from class_set import *
>>> A = Set(’a’,3,Set(3,’five’))
>>> import cPickle
>>> setdb = open(’oursets’,’w’)
>>> cPickle.dump(A,setdb)

oursets is a file. A new Python session:

$ python
>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> S = cPickle.load(f)
>>> S
{a,3,{3,five}}

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

the File oursets

(iclass_set
Set
p1
(dp2
S’s’
(lp3
S’a’
aI3
a(iclass_set
Set
p4
(dp5
S’s’
(lp6
I3
aS’five’
p7
asbasb.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Syntax for general Use
two methods: dump and load

General syntax to pickle and unpickle:

1. pickling
dumping an object to a file:

import cPickle
< file > = open(< name > , ’w’)
cPickle.dump(< object > , < file >)

2. unpickling
loading an object from file:

< file > = open(< name > , ’r’)
< object > = cPickle.load(< name >)

Not all objects can be pickled, e.g.: files.
An exception PickleError is provided.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Syntax for general Use
two methods: dump and load

General syntax to pickle and unpickle:

1. pickling
dumping an object to a file:

import cPickle
< file > = open(< name > , ’w’)
cPickle.dump(< object > , < file >)

2. unpickling
loading an object from file:

< file > = open(< name > , ’r’)
< object > = cPickle.load(< name >)

Not all objects can be pickled, e.g.: files.
An exception PickleError is provided.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Syntax for general Use
two methods: dump and load

General syntax to pickle and unpickle:

1. pickling
dumping an object to a file:

import cPickle
< file > = open(< name > , ’w’)
cPickle.dump(< object > , < file >)

2. unpickling
loading an object from file:

< file > = open(< name > , ’r’)
< object > = cPickle.load(< name >)

Not all objects can be pickled, e.g.: files.
An exception PickleError is provided.

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

algorithms and data structures

Algorithms and Data Structures
programming in Python revisited
sequences, dictionaries, lists

Persistent Data
storing information between executions
using DBM files

Object Serialization
defining data structures, for example: a set
using the Pickle module
an application to network programming

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Sending Objects through sockets
an application of pickling to network programming

Suppose we want to send sets from server to client
or from client to server.

Using pickling as follows:

1. sender dumps object to local file

2. sender reads file into one string

3. sender sends the string

4. receiver writes strings to file

5. receiver loads object from file

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Sending Objects through sockets
an application of pickling to network programming

Suppose we want to send sets from server to client
or from client to server.

Using pickling as follows:

1. sender dumps object to local file

2. sender reads file into one string

3. sender sends the string

4. receiver writes strings to file

5. receiver loads object from file

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Sending Objects through sockets
an application of pickling to network programming

Suppose we want to send sets from server to client
or from client to server.

Using pickling as follows:

1. sender dumps object to local file

2. sender reads file into one string

3. sender sends the string

4. receiver writes strings to file

5. receiver loads object from file

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Sending Objects through sockets
an application of pickling to network programming

Suppose we want to send sets from server to client
or from client to server.

Using pickling as follows:

1. sender dumps object to local file

2. sender reads file into one string

3. sender sends the string

4. receiver writes strings to file

5. receiver loads object from file

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Sending Objects through sockets
an application of pickling to network programming

Suppose we want to send sets from server to client
or from client to server.

Using pickling as follows:

1. sender dumps object to local file

2. sender reads file into one string

3. sender sends the string

4. receiver writes strings to file

5. receiver loads object from file

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Sending Objects through sockets
an application of pickling to network programming

Suppose we want to send sets from server to client
or from client to server.

Using pickling as follows:

1. sender dumps object to local file

2. sender reads file into one string

3. sender sends the string

4. receiver writes strings to file

5. receiver loads object from file

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Writing to Strings
using the module StringIO

Instead of working with a temporary file,
we can directly write to strings.

>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> A = cPickle.load(f)
>>> A
{a,3,{3,five}}

>>> import StringIO
>>> output = StringIO.StringIO()

>>> cPickle.dump(A,output)
>>> output.getvalue()
"(iclass_set\nSet\np1\n(dp2\nS’s’\n(lp3\nS’a’\naI3\na(iclass_set\nSet\np4\n(dp5\nS’s’\n(lp6\nI3\naS’five’\np7\nasbasb."

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Writing to Strings
using the module StringIO

Instead of working with a temporary file,
we can directly write to strings.

>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> A = cPickle.load(f)
>>> A
{a,3,{3,five}}

>>> import StringIO
>>> output = StringIO.StringIO()

>>> cPickle.dump(A,output)
>>> output.getvalue()
"(iclass_set\nSet\np1\n(dp2\nS’s’\n(lp3\nS’a’\naI3\na(iclass_set\nSet\np4\n(dp5\nS’s’\n(lp6\nI3\naS’five’\np7\nasbasb."

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Writing to Strings
using the module StringIO

Instead of working with a temporary file,
we can directly write to strings.

>>> from class_set import *
>>> import cPickle
>>> f = open(’oursets’,’r’)
>>> A = cPickle.load(f)
>>> A
{a,3,{3,five}}

>>> import StringIO
>>> output = StringIO.StringIO()

>>> cPickle.dump(A,output)
>>> output.getvalue()
"(iclass_set\nSet\np1\n(dp2\nS’s’\n(lp3\nS’a’\naI3\na(iclass_set\nSet\np4\n(dp5\nS’s’\n(lp6\nI3\naS’five’\np7\nasbasb."

MCS 275 L-36

14 April 2008

Algorithms and
Data Structures
programming in Python
revisited

sequences, dictionaries,
lists

Persistent Data
storing information between
executions

using DBM files

Object
Serialization
defining data structures, for
example: a set

using the Pickle module

an application to network
programming

Summary + Assignments

We restarted Making Use of Python...

Assignments:

1. Use list comprehensions to generate points
�
x � y �

uniformly distributed on the circle: x 2 � y2 � 1.
(For some angle t : x � cos

�
t � , y � sin

�
t � .)

2. Extend the Class set with a method member – e.g.:
A.member(3) – returning True or False accordingly.

3. Augment the Class set with the method add, to add
a sequence of elements to a set. The number of
elements varies, e.g.: S.add(2), S.add(2,3), etc.
are all valid uses of add.

4. Define the union and intersect operations on sets.

5. Give code for client and server to interchange a set.

