
Exam 1 MCS 275 Jan Verschelde Friday 22 February 2008

NAME : ANSWERS

Open book, open notes, but please do not ask questions.
Write all answers on these sheets.

question 1 2 3 4 5 total

points

maximum 15 20 15 25 25 100

1. Write a Python function BiDiag which takes on input a positive number n and returns
an n-by-n matrix A. All diagonal elements of A are 2 and all elements just above
and below the diagonal are 1:

A =























2 1 0 · · · 0 0 0
1 2 1 · · · 0 0 0
0 1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 1 0
0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2























.

BiDiag returns A as a two dimensional numpy array.

Answer:

from numpy import *

def BiDiag(n):

A = zeros((n,n),int)

for i in range(0,n):

A[i,i] = 2

if i > 0: A[i,i-1] = 1

if i < n-1: A[i,i+1] = 1

return A

/15

1



2. Write a Python function which removes all duplicate elements of a list given on input.
Call this function RemoveDuplicates.
If L = [1, 3, 1, 4, 3, 3, 2], RemoveDuplicates will return [1, 4, 3, 2].

(a) Write an iterative version of RemoveDuplicates.

Answer:

def RemoveDuplicates(L):

K = []

for i in range(0,len(L)):

if not L[i] in L[i+1:len(L)]:

K.append(L[i])

return K

(b) Write a recursive version of RemoveDuplicates.

Answer:

def RemoveDuplicates(L):

if len(L) <= 1:

return L

elif L[0] in L[1:len(L)]:

return RemoveDuplicates(L[1:len(L)])

else:

return [L[0]] + RemoveDuplicates(L[1:len(L)])

/20

3. Apply divide and conquer to compute the sum of all numbers in a list: the total sum
is the sum of the first half and the sum of the second half. Give a recursive function
RecSum using divide and conquer which returns the sum of a list given on input.

Answer:

def RecSum(L):

n = len(L)

if n == 0:

return 0

elif n == 1:

return L[0]

else:

return RecSum(L[0:n/2]) + RecSum(L[n/2:n])

/15

2



4. The Cantor set is defined by removing the middle third of [0,1] and then removing the
middle third of the remaining intervals. The n-th Cantor set is obtained by executing
the recursive removal n times. Cantor sets for n = 0, 1, and 2 are below:

n = 0 : [0,1]

n = 1 : [0,1/3], [2/3,1]

n = 2 : [0,1/9], [2/9,1/3], [2/3,7/9], [8/9,1]

(a) Write a function that returns the total length of all intervals which have been
removed to form the n-th Cantor set. Complete the function definition below:

def LengthCut(n,a,b):

"""

Returns the total length of the intervals removed

from the interval [a,b] to form the n-th Cantor set.

"""

Answer:

if n <= 0:

return 0

else:

c = (b-a)/3

L = a + c

lc = LengthCut(n-1,a,L)

R = b - c

lr = LengthCut(n-1,R,b)

return c + lc + lr

(b) Write a function that returns the lists of intervals in the n-th Cantor set.
Complete the function definition below:

def CantorSet(n,a,b,L):

"""

Returns the list of intervals for the n-th Cantor set.

The list is accumulated in L. In the first call L is [].

"""

Answer:

if n == 0:

return L + [(a,b)]

else:

c = (b-a)/3

Lb = a + c

Rb = b - c

return CantorSet(n-1,a,Lb,L) \

+ CantorSet(n-1,Rb,b,L)
/25

3



5. We use a binary tree to store a frequency table of words. The data at a node in the
tree is a tuple like (w,n), where the number n is the frequency of the string w.

The binary tree is ordered: all words less than the word at a node in the tree are in
the left branch while all other words are in the right branch of the tree.

The tree T is represented as a recursive triple of triplets: as (left,(w,n),right)

where left and right are again trees. The empty tree is the empty tuple ().

(a) Give a Python function LookUp that given a tree and a word returns the corre-
sponding frequency count stored in the tree. If the word does not occur in T,
zero must be returned. Write a recursive version of LookUp below.

Answer:

def LookUp(T,word):

if T == ():

return 0

elif T[1][0] == word:

return T[1][1]

elif word < T[1][0]:

return LookUp(T[0],word)

else:

return LookUp(T[2],word)

(b) Use a stack to write an iterative version of the recursive LookUp.

def LookUp(T,word):

S = [T]

while S != 0:

TonS = S.pop(0)

if TonS == ():

return 0

else:

if TonS[1][0] == word:

return TonS[1][1]

elif word < TonS[1][0]:

S.insert(0,TonS[0])

else:

S.insert(0,TonS[2])

/25

4


