
Exam 2 MCS 275 Jan Verschelde Friday 11 April 2008

NAME : Answers

Open book, open notes, but please do not ask questions.
Write all answers on these sheets.

question 1 2 3 4 5 6 total

points

maximum 15 15 20 20 15 15 100

1. To process preferences we create forms, where preferences are listed using checkboxes.
Write code for the function

def WriteForm(n,L,p):

"""

Returns the string that defines an html form.

The input parameters are

n is the name of the checkbox,

L is a list of preferences,

p contains the name of the string which

will handle the input form.

The value of each element in the checkbox

is its position in the list.

One submit button concludes the form.

"""

Answer:

s = "<form method=\"post\" action=\"%s\">" % p

for i in range(0,len(L)):

c = "\n<p><input name = \"%s\" type = checkbox value = %s>" \

% (n,str(i))

c = c + str(L[i])

s = s + c

s = s + "\n<p><input type=\"submit\" value = \"submit\">"

s = s + "\n</form>"

return s

/15

1



2. To order a certain good in a certain quantity, an html form has two input elements:
good for the name of the good, and quantity for the number of items ordered.

The script which handles this form writes plaintext to the web page. If the name of
the good is missing it writes "please provide name of good". The default value
of quantity is one. If the name of the good is provided, the script confirms writing
"ordered <n> of <good>", where n is the quantity and good the name of the good.

Write the code of the script which handles this form in the way described above.

Answer:

#!/Library/Frameworks/Python.framework/Versions/Current/bin/python

import cgi

print "Content-Type: text/plain\n"

form = cgi.FieldStorage()

if not form.has_key(’good’):

print ’please provide name of good’

else:

g = form[’good’].value

n = int(form[’quantity’].value)

print ’ordered %d of %s’ % (n,g)

/15

3. Suppose that data to be entered in a database of used cars is stored on file. For each
car there is one line on the file. For example, the file cars.txt could look like.

{’make’:’Toyota’, ’year’:2001, ’price’:6995.21 }

{’make’:’Honda’, ’year’:2005, ’price’:13798.25 }

For every car we store its make, year and sales price in a dictionary with keys ’make’,
’year’, and ’price’. Then running the script on the file cars.txt prints

(0, ’Toyota’, 2001, 6995.21)

(1, ’Honda’, 2005, 13798.25)

Give the code to open the file cars.txt and to write the tuples to screen.

Answer:

file = open(’cars.txt’,’r’)

key = 0

while True:

L = file.readline()

if L == ’’: break

d = eval(L)

tp = (key,d[’make’],d[’year’],d[’price’])

print tp

key = key + 1

file.close()

/20

2



4. Consider a server to perform simple calculations. The server listens for one client
to send an arithmetic expression, e.g.: 4*8. The server computes the value (in this
example 32) and sends the result to the client.

(a) For the client/server program to work, the server and the client have to agree
on certain issues. What are these issues? Describe those elements common in
the code for both client and server.

Answer:

The three issues client and server both have to agree on are (1) the IP address
of the server, (2) the port number, and (3) the buffer size.

The code for the server has the following definitions:

hostname = ’’ # blank for any address

number = 11267 # number for the port

buffer = 80 # size of the buffer

The code for the client has the following definitions:

hostname = ’localhost’ # on same host

number = 11267 # same port number

buffer = 80 # size of the buffer

(b) Write code for the function below:

def compute(server,buffer):

"""

On input are in server the server socket

and in buffer the buffer size.

The server accepts connection from a client

and waits for an arithmetic expression.

Then the server sends the result of the

expression to the client.

"""

Answer:

client, client_address = server.accept()

e = client.recv(buffer)

print ’received \"’ + e + ’\"’

r = eval(e)

client.send(str(r))
/20

3



5. Suppose we want to develop a screensaver. We view the screen as a grid of rect-
angles. Threads determine grayscales of each rectangle at random, after sleeping
between 1 and 6 time units before generating a new random grayscale. To develop
this screensaver, we first simulate the multithreaded generation of the grayscales.

The main program prompts for the number of rows and columns. The names of the
threads are tuples (i, j) with i and j the row and column of the rectangular area of
the screen for which the thread will generate grayscales.

Using ScreenThread as name of the class which defines the behavior of the threads,
write code for the main program.

Answer:

def main():

n = input(’give #rows : ’)

m = input(’give #columns : ’)

T = []

for i in range(0,n):

for j in range(0,m):

name = str((i,j))

T.append(ScreenThread(name))

print ’starting the threads’

for t in T: t.start()

print ’threads have started’
/15

6. We can measure the complexity of a web page by counting the < (less than) symbols.
Write code for the following function:

def CountLT(url):

"""

Opens the web page defined by the url and returns the number

of ’<’ symbols found on the web page.

Returns -1 if opening of the web page fails.

"""

Answer:

import urllib

try:

cnt = 0

f = urllib.urlopen(url)

while True:

d = f.read(1)

if d == ’’: break

if d == ’<’: cnt = cnt + 1

return cnt

except:

return -1
/15

4


